Advertisement

X-ray induced Sm-ion valence conversion in Sm-ion implanted fluoroaluminate glasses towards high-dose radiation measurement

  • Farley ChiciloEmail author
  • Cyril Koughia
  • Richard Curry
  • Russel Gwilliam
  • Ruben Ahumada-Lazo
  • Andy Edgar
  • David J. Binks
  • Dean Chapman
  • Safa Kasap
Article
  • 77 Downloads

Abstract

Ion implantation of Sm-ions has been tested in fabricating 2D detectors for microbeam radiation therapy (MRT). Sm-ions have been successfully implanted into fluoroaluminate (FA) glasses. The implantation concentration was chosen to be 5 × 1015 ions/cm2 and the ions were implanted at an energy of 2 MeV. After implantation, samarium ions resided within a thin plane very near the surface in the glass, which is expected to be beneficial for 2D imaging. Following implantation, photoluminescence (PL) spectra indicate that the embedded Sm-ions are in the form of Sm2+ and Sm3+. Subsequent annealing around the glass transition temperature (475 °C) converts all Sm2+ ions into Sm3+. Under X-ray irradiation, a partial conversion of Sm3+ into Sm2+ has been observed which may be used as measure of the X-ray dose delivered into the sample. QFRS (quadrature-frequency-resolved-spectroscopy) measurements on PL prominent emissions from Sm3+ and Sm2+ ions show that the PL decays associated with various transitions are in the 0.1 to 100 ms range (slow transitions). X-ray irradiation has led also to the appearance of broad and intense photoluminescence bands associated with X-ray induced structural defects in the host glass as confirmed in the unimplanted FA glasses. The generation of hole trapping centers in the host glass leads to the capture of photogenerated holes and thus allows the electrons to convert Sm3+ to Sm2+. Defect related PL decay signals were measured to be in the nanosecond region. These unwanted defect related fast decaying signals have been separated from slow Sm2+ and Sm3+ photoluminescence signals by using an “out-of-phase” PL measurements through a phase-sensitive photodetection technique with a modulated excitation laser diode and a lock-in amplifier. Overall, the Sm-ion implanted fluoroaluminate glass shows the successful conversion from the trivalent form of samarium (Sm3+) to the divalent form (Sm3+) under X-ray irradiation over a large dynamic range of X-ray intensities (800 Gy in air).

Notes

Acknowledgements

We thank Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support and the New Zealand Ministry of Business, Innovation, and Employment. Ruben Ahumada-Lazo thanks CONACYT for provision of the scholarships 284566/399936. This work was supported by The Royal Society (London) through an International Exchange Award (IE160035) and by the UK Engineering and Physical Sciences Research Council (EPSRC) Grant No. EP/N020057/2. We would also like to thank Chris Varoy for his previous work on FA and FP glass samples that lead to the refinement of the glass making process.

References

  1. 1.
    D.N. Slatkin, F.A. Dilmanian, P. Spanne, M. Sandborg, Microbeam radiation therapy. Med. Phys. 19, 1395–1400 (1992)CrossRefGoogle Scholar
  2. 2.
    H. Blattmann, J. Gebbers, E. Brauer-Krisch, A. Bravin, G. Le Duc, W. Burkard, M. Di Michiel, V. Djonov, D.N. Slatkin, J. Stepanek, J.A. Laissure, Applications of synchrotron x-rays to radiotherapy. Nucl. Instrum. Methods Phys. Res. A 548, 17–22 (2005)CrossRefGoogle Scholar
  3. 3.
    A. Dilmanian, Z. Zhong, T. Bacarian, H. Benveniste, P. Romanelli, R. Wang, J. Welwart, T. Yuasa, E.M. Rosen, D.J. Anschel, Interlaced xray microplanar beams: a radiosurgery approach with clinical potential. Proc. Natl. Acad. Sci. U.S.A. 103, 9709–9714 (2006)CrossRefGoogle Scholar
  4. 4.
    C. Crosbie, R.L. Anderson, K. Rothkamm, C.M. Restall, L. Cann, S. Ruwanpura, S. Meachem, N. Yagi, I. Svalbe, R.A. Lewis, B.R.G. Williams, P.A.W. Rogers, Tumor cell response to synchrotron microbeam radiation therapy differs markedly from cells in normal tissues. Int. J. Radiat. Oncol. Biol. Phys. 77, 886–894 (2010)CrossRefGoogle Scholar
  5. 5.
    E. Brauer-Krisch, R. Serduc, E.A. Siegbahn, G. Le Duc, Y. Prezado, A. Bravin, H. Blattmann, J.A. Laissue, Effects of pulsed, spatially fractionated, microscopic synchrotron x-ray beams on normal and tumoral brain tissue. Mutat. Res. Mutat. Res. 704, 160–166 (2010)CrossRefGoogle Scholar
  6. 6.
    E. Bräuer-Krisch, A. Rosenfeld, M. Lerch, M. Petasecca, M. Akselrod, J. Sykora, J. Bartz, M. Ptaszkiewicz, P. Olko, A. Berg, M. Wieland, S. Doran, T. Brochard, A. Kamlowski, G. Cellere, A. Paccagnella, E.A. Siegbahn, Y. Prezado, I. Martinez-Rovira, A. Bravin, L. Dusseau, P. Berkvens, Potential high resolution dosimeters for MRT. AIP Conf. Proc. 1266, 89–97 (2010)CrossRefGoogle Scholar
  7. 7.
    D.L. Griscom, E.J. Friebele, K.J. Long, J.W. Fleming, Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers. J. Appl. Phys. 54, 3743–3762 (1983)CrossRefGoogle Scholar
  8. 8.
    K. Miura, J. Qiu, S. Fujiwara, S. Sakaguchi, K. Hirao, Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions. Appl. Phys. Lett. 80, 2263–2265 (2002)CrossRefGoogle Scholar
  9. 9.
    E. Malchukova, B. Boizot, G. Petite, D. Ghaleb, Optical properties and valence state of Sm ions in aluminoborosilicate glass under β-irradiation. J. Non-Cryst. Solids 353, 2397–2402 (2007)CrossRefGoogle Scholar
  10. 10.
    S. Vahedi, G. Okada, C. Koughia, R. Sammynaiken, A. Edgar, S. Kasap, ESR study of samarium doped fluorophosphate glasses for high-dose, high-resolution dosimetry. Opt. Mater. Express 4, 1244–1256 (2014)CrossRefGoogle Scholar
  11. 11.
    G. Okada, J. Ueda, S. Tanabe, G. Belev, T. Wysokinski, D. Chapman, D. Tonchev, S. Kasap, Samarium-doped oxyfluoride glass-ceramic as a new fast erasable dosimetric detector material for microbeam radiation cancer therapy applications at the Canadian synchrotron. J. Am. Ceram. Soc. 97, 1976–1980 (2014)CrossRefGoogle Scholar
  12. 12.
    B. Morrell, G. Okada, S. Vahedi, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, R. Sammynaiken, S. Kasap, Optically erasable samarium-doped fluorophosphate glasses for high-dose measurement in microbeam radiation therapy. J. Appl. Phys. 115, 063107 (2014)CrossRefGoogle Scholar
  13. 13.
    G. Belev, G. Okada, D. Tonchev, C. Koughia, C. Varoy, A. Egar, T. Wysokinski, D. Chapman, S. Kasap, Valency conversion of samarium ions under high dose synchrotron generated x-ray radiation. Phys. Status Solidi C 8, 2822–2825 (2011)CrossRefGoogle Scholar
  14. 14.
    A. Edgar, C. Varoy, C. Koughia, G. Okada, G. Belev, S. Kasap, High-resolution x-ray imaging with samarium-doped fluoroaluminate and fluorophosphate glass. J. Non-Cryst. Solids 377, 124–128 (2013)CrossRefGoogle Scholar
  15. 15.
    S. Vahedi, G. Okada, B. Morrell, E. Muzar, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, S. Kasap, X-ray induced Sm3+ to Sm2+ conversion in fluorophosphate and fluoroaluminate glasses for the monitoring of high-doses in microbeam radiation therapy. J. Appl. Phys. 112, 073108 (2012)CrossRefGoogle Scholar
  16. 16.
    G. Okada, B. Morrell, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, S. Kasap, Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses. Appl. Phys. Lett. 99, 121105 (2011)CrossRefGoogle Scholar
  17. 17.
    G. Okada, S. Vahedi, B. Morrell, C. Koughia, G. Belev, T. Wysokinski, D. Chapman, C. Varoy, A. Edgar, S. Kasap, Examination of the dynamic range of Sm-doped glasses for high-dose and high-resolution dosimetric applications in microbeam radiation therapy at the Canadian synchrotron. Opt. Mater. 35, 1976–1980 (2013)CrossRefGoogle Scholar
  18. 18.
  19. 19.
    K. Koughia, D. Saitou, T. Aoki, M. Munzar, S.O. Kasap, Photoluminescence lifetime spectrum in erbium doped Ge-Ga-S glasses. J. Non. Cryst. Solids 352, 2420–2424 (2006)CrossRefGoogle Scholar
  20. 20.
    S.O. Kasap, K. Koughia, M. Munzar, D. Tonchev, D. Saitou, T. Aoki, Recent photoluminescence research on chalcogenide glasses for photonics applications. J. Non. Cryst. Solids 353, 1364–1371 (2007)CrossRefGoogle Scholar
  21. 21.
    K. Koughia, M. Munzar, T. Aoki, S. Kasap, Photoluminescence spectra and lifetimes of 4I13/24I15/2 and 4I11/24I15/2transitions in erbium doped GeGaSe and GeGaS glasses. J. Mater. Sci.: Mater. Electron. 18, 153–157 (2007)Google Scholar
  22. 22.
    T. Aoki, D. Saitou, K. Fujimoto, C. Fujihashi, K. Shimakawa, K. Koughia, S.O. Kasap, Quadrature frequency resolved spectroscopy (QFRS) of radiative transitions of Er3+ and Nd3+ ions in chalcogenide glasses (ChGs). J. Phys: Conf. Ser. 253, 012010 (2010)Google Scholar
  23. 23.
    L. Strizik, V. Prokop, J. Hrabovsky, T. Wagner, T. Aoki, Quadrature frequency resolved spectroscopy of upconversion photoluminescence in GeGaS:Er3+: I. Determination of energy transfer upconversion parameter. J. Mater. Sci.: Mater. Electron. 28, 7053–7063 (2017)Google Scholar
  24. 24.
    T. Aoki, L. Strizik, J. Hrabovsky, T. Wagner, Quadrature frequency resolved spectroscopy of upconversion photoluminescence in GeGaS:Er3+; II. Elucidating excitation mechanisms of red emission besides green emission. J. Mater. Sci.: Mater. Electron. 28, 7077–7082 (2017)Google Scholar
  25. 25.
    J. Zeigler, The stopping range of ions with matter, www.srim.org (Accessed on 17 February 2019)
  26. 26.
    P. Ebeling, D. Ehrt, M. Friedrich, X-ray induced effects in phosphate glasses. Opt. Mater. 20, 101–111 (2002)CrossRefGoogle Scholar
  27. 27.
    D. Griscom, Defect centers in heavy-metal fluoride glasses: a review. J. Non-Cryst. Solids 161, 45–51 (1993)CrossRefGoogle Scholar
  28. 28.
    F. Chen, X. Wang, K. Wang, Development of ion-implanted optical waveguides in optical materials: a review. Opt. Mater. 29, 1523–1542 (2007)CrossRefGoogle Scholar
  29. 29.
    P. Townsend, P. Chandler, L. Zhang, Optical effects of ion implantation (Cambridge University Press, Cambridge, 1994)CrossRefGoogle Scholar
  30. 30.
    C. Buchal, Ion implantation for optical applications. Nucl. Instrum. Methods Phys. Res. B 96, 370–373 (1995)CrossRefGoogle Scholar
  31. 31.
    J. Leonard, D. Cohen, B. Yonkee, R. Farrell, T. Margalith, S. Lee, S. DenBaars, J. Speck, S. Nakamura, Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture. Appl. Phys. Lett. 107, 011102 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Biomedical Engineering, College of EngineeringUniversity of SaskatchewanSaskatoonCanada
  2. 2.Department of Electrical and Computer Engineering, College of EngineeringUniversity of SaskatchewanSaskatoonCanada
  3. 3.Photon Science Institute, School of Electrical and Electronic EngineeringUniversity of ManchesterManchesterUK
  4. 4.School of Physics and AstronomyPhoton Science Institute, University of ManchesterManchesterUK
  5. 5.Department of Electronic and Electrical Engineering, Surrey Ion Beam CentreUniversity of SurreyGuildfordUK
  6. 6.School of Chemical and Physical SciencesVictoria University of WellingtonWellingtonNew Zealand
  7. 7.Department of Anatomy and Cell Biology, College of MedicineUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations