Investigation on phase and microstructures of a temperature stable high-Q Li2Zn0.95Sr0.05Ti3O8 microwave dielectric ceramic

  • Haishen RenEmail author
  • Zhilun Wu
  • Fei He
  • Yi Zhang
  • Xiangyu Zhao
  • Xiaogang Yao
  • Huixing LinEmail author


A temperature stable high-Q Li2Zn0.95Sr0.05Ti3O8 microwave dielectric ceramic is fabricated by conventional solid-state reaction route and the phase composition, microstructures and microwave dielectric properties are investigated in this paper. The bulk density and FESEM results indicate that this ceramic can be well-sintered at 1075 °C for 4 h. Since the difficulty in Sr2+ ions diffused into the Li2ZnTi3O8 crystal lattice to form solid solutions owing to the large radii difference between Sr2+ (1.44Å) and Zn2+ (0.74Å), there are three phases including the main phase Li2ZnTi3O8 and the second phase SrTiO3 and unknown phase according to the XRD and element-distribution mapping results. The formation of second phase is advantageous to improve the relative permittivity (εr) and temperature coefficient of resonant frequency (τf), but degrades the quality factor (Q × f) slightly. The Li2Zn0.95Sr0.05Ti3O8 ceramic sintered at 1075 °C/4 h displays a temperature stable high-Q properties: εr = 26.6, Q × f= 62300 GHz, and τf = 0.27 ppm/°C.



  1. 1.
    M.T. Sebastian, Dielectric Materials for Wireless Communication, 1st edn. (Elsevier, Oxford, 2008)Google Scholar
  2. 2.
    H. Ohsato, J. Ceram. Soc. Jpn. 113, 703–711 (2005)CrossRefGoogle Scholar
  3. 3.
    M.T. Sebastian, R. Ubic, H. Jantunen, Int. Mater. Rev. 60, 392–412 (2015)CrossRefGoogle Scholar
  4. 4.
    M. Bari, E. Taheri-Nassaj, H. Taghipour-Armaki, J. Am. Ceram. Soc. 96, 3737–3741 (2013)CrossRefGoogle Scholar
  5. 5.
    X.B. Liu, H.F. Zhou, X.L. Chen, L. Fang, J. Alloys Compd. 515, 22–25 (2012)CrossRefGoogle Scholar
  6. 6.
    M.Z. Dang, H.S. Ren, X.G. Yao, H.Y. Peng, T.Y. Xie, H.X. Lin, L. Luo, J. Am. Ceram. Soc. 101, 3026–3031 (2018)CrossRefGoogle Scholar
  7. 7.
    J. Zhang, Y. Luo, Z.X. Yue, L.T. Li, Ceram. Int. 44, 141–145 (2018)CrossRefGoogle Scholar
  8. 8.
    S. Nomura, K. Toyama, K. Kaneta, Jpn. J. Appl. Phys. 2 21, L624–L626 (1982)CrossRefGoogle Scholar
  9. 9.
    W.C. Tzou, Y.C. Chen, C.F. Yang, Mater. Res. Bull. 41, 1357–1363 (2006)CrossRefGoogle Scholar
  10. 10.
    D. Pamu, G.L.N. Rao, K.C. James Raju, J. Am. Ceram. Soc. 95, 126–132 (2012)CrossRefGoogle Scholar
  11. 11.
    S. George, M.T. Sebastian, J. Am. Ceram. Soc. 93, 2164–2166 (2010)CrossRefGoogle Scholar
  12. 12.
    S. George, M.T. Sebastian, J. Eur. Ceram. Soc. 30, 2585–2592 (2010)CrossRefGoogle Scholar
  13. 13.
    Z.X. Fang, B. Tang, F. Si, S.R. Zhang, Ceram. Int. 43, 1682–1687 (2017)CrossRefGoogle Scholar
  14. 14.
    X.G. Zhao, Bull. Chin. Ceram. Soc. 33, 401–404 (2014)Google Scholar
  15. 15.
    H.S. Ren, M.Z. Dang, H.J. Wang, T.Y. Xie, S.H. Jiang, H.X. Lin, L. Luo, Mater. Let. 210, 113–116 (2018)CrossRefGoogle Scholar
  16. 16.
    J.B. Song, K.X. Song, J.S. Wei, H.X. Lin, J.M. Xu, J. Wu, W.T. Su, J. Alloys Compd. 731, 264–270 (2018)CrossRefGoogle Scholar
  17. 17.
    H.F. Zhou, N. Wang, X.H. Tan, J. Huang, X.L. Chen, J. Mater. Sci. Mater. Electron. 27, 11850–11855 (2016)CrossRefGoogle Scholar
  18. 18.
    X.P. Lu, Y. Zheng, Z.W. Dong, W.Y. Zhang, Q. Huang, J. Mater. Sci. Mater. Electron. 25, 3358–3363 (2014)CrossRefGoogle Scholar
  19. 19.
    T.A. Hamid, T.N. Ehsan, M. Bari, J. Alloys Compd. 581, 757–761 (2013)CrossRefGoogle Scholar
  20. 20.
    X.P. Lu, Y. Zheng, Q. Huang, W.H. Xiong, J. Electron. Mater. 44, 4243–4249 (2015)CrossRefGoogle Scholar
  21. 21.
    M. Parastoo, T.N. Ehsan, T.A. Hamid, J. Alloys Compd. 695, 3772–3778 (2017)CrossRefGoogle Scholar
  22. 22.
    J. Zhang, R.Z. Zuo, J. Mater. Sci. Mater. Electron. 26, 9219–9224 (2015)CrossRefGoogle Scholar
  23. 23.
    P. Zhang, Y.G. Zhao, Ceram. Int. 42, 2882–2886 (2016)CrossRefGoogle Scholar
  24. 24.
    C.L. Huang, C.H. Su, C.M. Chang, J. Am. Ceram. Soc. 94, 4146–4149 (2011)CrossRefGoogle Scholar
  25. 25.
    X.P. Lu, Z.W. Dong, Y. Zheng, J. Electron. Mater. 46, 6977–6983 (2017)CrossRefGoogle Scholar
  26. 26.
    J.Q. Ren, K. Bi, X.L. Fu, Z.J. Peng, Ceram. Int. 44, 8928–8933 (2018)CrossRefGoogle Scholar
  27. 27.
    Y. Sadin, E.T. Nassaj, H.T. Armaki, W.Z. Lu, W. Lei, H.B. Bafrooei, J. Mater. Sci. Mater. Electron. 29, 13516–13525 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Inorganic Functional Material and Device, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiChina
  2. 2.Department of MaterialsChongqing University of TechnologyChongqingChina

Personalised recommendations