Advertisement

Novel, green and low cost synthesis of Ag nanoparticles with superior adsorption and solar based photocatalytic activity

  • Roya Mohammadzadeh KakhkiEmail author
  • Sara Hedayat
  • Kobra Mohammadzadeh
Article
  • 39 Downloads

Abstract

In this article we reported a new and green method for synthesis of Ag nanoparticles based on anbarnesara. Anbarnesa derived from female donkeys and its antioxidant effects have been well-known. Since this synthesis method is very simple, environmental friendly and high crop production, therefore this method can be scaled up for synthesis of metal nanoparticles. Ag nanoparticles were characterized using UV–Vis, FTIR, X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) methods. FESEM analysis showed the average particle size of 35 nm as well as revealed their morphology. The produced Ag nanoparticles show high adsorption ability for removing of methylene blue as a model of dye pollutants. The adsorption of methylene blue obeys from Langmuir model. The kinetic of adsorption is predicted by the pseudo second order model with rate constant 0.02 (g/mg.min). Moreover this new nanoparticle showed a photocatalytic activity for degradation of methylene blue under sun light. Therefore, this new silver nanoparticle is a promising green material to remove MB from wastewater. The present study aims to provide a green and low cost synthesis method for preparation of Ag nanoparticles with high adsorption and photocatalytic activity.

Notes

References

  1. 1.
    H.S. Naiwa (ed.), Hand Book of Nanostructural Materials and Nanotechnology (Academic Press, New York, 2000), pp. 1–5Google Scholar
  2. 2.
    C.J. Murphy, Sustainability as an emerging design criterion in nanoparticle synthesis and applications. J. Mater. Chem. 18, 2173–2176 (2008)Google Scholar
  3. 3.
    I. Hussain, M. Brust, A.J. Papworth, A.I. Cooper, Preparation of acrylate-stabilized gold and silver hydrosols and gold-polymer composite films. Langmuir 19, 4831–4835 (2003)Google Scholar
  4. 4.
    D.J. Burleson, M.D. Driessen, R.L. Penn, On the characterization of environmental nanoparticles. J. Environ. Sci. Health A 39, 2707–2753 (2005)Google Scholar
  5. 5.
    M.-D. Cheng, Effects of nanophase materials (< or = 20 nm) on biological responses. J. Environ. Sci. Health A 39, 2691–2705 (2004)Google Scholar
  6. 6.
    S.O. Obare, G.J. Meyer, Nanostructured materials for environmental remediation of organic contaminants in water. J. Environ. Sci. Health A Tox Hazard. Subst. Environ. Eng. 39(10), 2549–2582 (2004)Google Scholar
  7. 7.
    G. Yuan, Environmental nanomaterials: occurrence, synthesis, characterization, health effect and potential applications. J. Environ. Sci. Health A 39, 2545–2548 (2005)Google Scholar
  8. 8.
    T. Masciangioli, W.-X. Zhang, Environmental technologies at the nanoscale. Environ. Sci. Technol. 37, 102A–108A (2003)Google Scholar
  9. 9.
    M.A. Albrecht, C.W. Evans, C.L. Raston, Green chemistry and the health implications of nanoparticles. Green Chem. 8, 417–432 (2006)Google Scholar
  10. 10.
    W. Chen, W. Cai, L. Zhang, G. Wang, L. Zhang, Sonochemical processes and formation of gold nanoparticles within pores of mesoporous silica. J. Colloid Interface Sci. 238, 291–295 (2001)Google Scholar
  11. 11.
    A. Frattini, N. Pellegri, D. Nicastro, O. de Sanctis, Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Mater. Chem. Phys. 94, 148–152 (2005)Google Scholar
  12. 12.
    B. Knoll, F. Keilmann, Near-field probing of vibrational absorption for chemical microscopy. Nature 399, 134–137 (1999)Google Scholar
  13. 13.
    S. Sengupta, D. Eavarone, I. Capila, G.L. Zhao, N. Watson, T. Kiziltepe, R. Sasisekharan, Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436, 568–572 (2005)Google Scholar
  14. 14.
    T.C. Prathna, N. Chandrasekaran, A.M. Raichur, A. Mukherjee, Kinetic evolution studies of silver nanoparticles in a bio-based green synthesis process. Colloid Surf A 377, 212–216 (2011)Google Scholar
  15. 15.
    L. Sintubin, B. De Gusseme, P. Van der Meeren, B.F.G. Pycke, W. Verstraete, N. Boon, The antibacterial activity of biogenic silver and its mode of action. Appl. Microbiol. Biotechnol. 91, 153–162 (2011)Google Scholar
  16. 16.
    P.P.N.V. Kumar, S.V.N. Pammi, P. Kollu, K.V.V. Satyanarayana, U. Shameem, Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Ind. Crop Prod. 52, 562–566 (2014)Google Scholar
  17. 17.
    M.C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004)Google Scholar
  18. 18.
    R. Mariselvam, A.J.A. Ranjitsingh, A.U.R. Nanthini, K. Kalirajan, C. Padmalatha, P.M. Selvakumar, Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (Family: Arecaceae) for enhanced antibacterial activity. Spectrochim. Acta A 129, 537e41 (2014)Google Scholar
  19. 19.
    S.D. Danai-Tambhale, P.V. Adhyapak, Facile green synthesis of silver nanoparticles using Psoralea corylifolia L. seed extract and their in vitro antimicrobial activities. Int. J. Pharm. Biol. Sci. 5, 457–567 (2014)Google Scholar
  20. 20.
    S.P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, M. Sastry, Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Progr 22, 577e83 (2006)Google Scholar
  21. 21.
    G. Gnanajobitha, K. Paulkumar, M. Vanaja, S. Rajeshkumar, C. Malarkodi, G. Annadurai, Fruit-mediated synthesis of silver nanoparticles using Vitis vinifera and evaluation of their antimicrobial efficacy. J Nanostruct Chem 3, 1e6 (2013)Google Scholar
  22. 22.
    A. Husen, K.S. Siddiqi, Plants and microbes assisted selenium nanoparticles: characterization and application. J Nanobiotechnol 12, 1e10 (2014)Google Scholar
  23. 23.
    M. Khan, A.H. Al-Marri, M. Khan, M.R. Shaik, N. Mohri, S.F. Adil et al., Green approach for the effective reduction of graphene oxide using Salvadora persica L. root (Miswak) extract. Nanoscale Res. Lett. 10, 1e9 (2015)Google Scholar
  24. 24.
    E. Ostuni, C.S. Chen, D.E. Ingber, G.M. Whitesides, Selective deposition of proteins and cells in arrays of microwells. Langmuir 17, 2828e34 (2001)Google Scholar
  25. 25.
    J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd edn. (Princeton University Press, Princeton, NJ, 2008)Google Scholar
  26. 26.
    X. Guo, M. Baumgarten, K. Müllen, Designing p-conjugated polymers for organic electronics. Prog. Polym. Sci. 38, 1832e908 (2013)Google Scholar
  27. 27.
    A. Arinstein, M. Burman, O. Gendelman, E. Zussman, Effect of supramolecular structure on polymer nanofibre elasticity. Nat. Nanotechnol. 2, 59–62 (2007)Google Scholar
  28. 28.
    S. Schultz, D.R. Smith, J.J. Mock, D.A. Schultz, Single-target molecule detection with nonbleaching multicolor optical immunolabels. PNAS 97, 996–1001 (2000)Google Scholar
  29. 29.
    M. Rai, A. Yadav, A. Gade, Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27(1), 76–83 (2009)Google Scholar
  30. 30.
    J.L. Elechiguerra, J.L. Burt, J.R. Morones, A. Camacho-Bragado, X. Gao, H.H. Lara, M.J. Yacaman, Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnol. 3, 6 (2005)Google Scholar
  31. 31.
    R.M. Crooks, B.I. Lemon, L. Sun, L.K. Yeung, M. Zhao, Dendrimer-encapsulated metals and semiconductors: synthesis, characterization, and applications Top. Curr. Chem. 212, 82–135 (2001)Google Scholar
  32. 32.
    D.I. Gittins, D. Bethell, R.J. Nichols, D.J. Schiffrin, Diode-like electron transfer across nanostructured films containing a redox ligand. J. Mater. Chem. 10, 79–83 (2000)Google Scholar
  33. 33.
    M. Behravanad, A.H. Panahi, A. Naghizadeh, M. Ziaeed, R. Mahdavie, A. Mirzapour, Int. J. Biol. Macromol. 124, 148–154 (2019)Google Scholar
  34. 34.
    A. Henglein, Reduction of Ag(CN)2 on silver and platinum colloidal nanoparticles. Langmuir 17, 2329–2333 (2001)Google Scholar
  35. 35.
    L. Rodriguez-Sanchez, M.C. Blanco, M.A. Lopez-Quintela, Electrochemical synthesis of silver nanoparticles. J. Phys. Chem. B 104, 9683–9688 (2000)Google Scholar
  36. 36.
    J.J. Zhu, S.W. Liu, O. Palchik, Y. Koltypin, A. Gedanken, Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir 16, 6396–6399 (2000)Google Scholar
  37. 37.
    I. Pastoriza-Santos, M. Liz-Marzan, Formation of PVP-protected metal nanoparticles in DMF. Langmuir 18, 2888–2894 (2002)Google Scholar
  38. 38.
    N.A. Begum, S. Mondal, S. Basu, R.A. Laskar, D. Mandal, Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts. Colloids Surf. B 71(1), 113–118 (2009)Google Scholar
  39. 39.
    H. Bar, D.K. Bhui, G.P. Sahoo, P. Sarkar, S.P. De, A. Misra, Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf. A 339, 134–139 (2009)Google Scholar
  40. 40.
    J.Y. Song, B.S. Kim, Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst. Eng. 32(79–84), 489 (2009)Google Scholar
  41. 41.
    A. Singh, D. Jain, M.K. Upadhyay, N. Khandelwal, H.N. Verma, Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their antimicrobial activities. Digest J. Nanomater. Biostructures 5(2), 483–489 (2010)Google Scholar
  42. 42.
    M. Valodkar, S. Modi, A. Pal, S. Thakore, Synthesis and anti-bacterial activity of Cu, Ag and Cu–Ag alloy nanoparticles: a green approach. Mater. Res. Bull. 46, 384–389 (2011)Google Scholar
  43. 43.
    V.K. Sharma, R.A. Yngard, Y. Lin, Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 145, 83–96 (2009)Google Scholar
  44. 44.
    D. Jain, H.K. Daima, S. Kachhwaha, S.L. Kothari, Digest J. Nanomater. Biostructures 4(3), 557–563 (2009)Google Scholar
  45. 45.
    N. Saifuddin, C.W. Wong, A.A.N. Yasumira, E-J. Chem. 6(1), 61–70 (2009)Google Scholar
  46. 46.
    K.C. Bhainsa, S.F. D’Souza, Colloids Surf. B 47, 160–164 (2006)Google Scholar
  47. 47.
    B. Willner, B. Basnar, B. Willner, FEBS J. 274, 302–309 (2007)Google Scholar
  48. 48.
    Z.U.R. Mashwani, T. Khan, M.A. Khan, A. Nadhman, Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: current status and future prospects. Appl. Microbiol. Biotechnol. 99, 9923e34 (2015)Google Scholar
  49. 49.
    A. Rostami-Vartooni, M. Nasrollahzadeh, M. Alizadeh, Green synthesis of seashell supported silver nanoparticles using Bunium persicum seeds extract: application of the particles for catalytic reduction of organic dyes. J. Colloid Interfaces Sci. 470, 268e75 (2016)Google Scholar
  50. 50.
    H. Shafiee, H. Mortazavi, M. Baharvand, G. Eslami, S. Bakhtiari, S. Taheri, F. Namazi, A. Asgari, S. Azimi, K. Joharchi, Afr. J. Microbiol. Res. 6(15), 3600–3603 (2012)Google Scholar
  51. 51.
    L.S. Oliveira, A.S. Franca, T.M. Alves, S.D. Rocha, J. Hazardous Mater. 155, 507 (2008)Google Scholar
  52. 52.
    R. Ahmad, Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). J. Hazard. Mater. 171, 767–773 (2009)Google Scholar
  53. 53.
    D. Robert, S. Parra, C. Pulgarin, A. Krzton, J.V. Weber, Appl. Surf. Sci. 167, 51–58 (2000)Google Scholar
  54. 54.
    E.P. Melian, O.G. Diaz, J. Arana, J.M.D. Rodriguez, E.T. Rendon, J.A.H. Melian, Catal. Today 129, 256–262 (2007)Google Scholar
  55. 55.
    T.L. Xu, Y. Cai, K.E. O’Shea, Environ. Sci. Technol. 41, 5471–5477 (2007)Google Scholar
  56. 56.
    Y.M. Xu, C.H. Langford, Langmuir 17, 897–902 (2001)Google Scholar
  57. 57.
    R. Sathyavathi, M.B. Krishna, S.V. Rao, R. Saritha, D.N. Rao, Adv. Sci. Lett. 3, 1–6 (2010)Google Scholar
  58. 58.
    P. Ruben, D. Rivera-Rangel, M.D.P. González-Muñoz, M. Avila-Rodriguez, T.A. Razo-Lazcano, Green synthesis of silver nanoparticles in oil-in-water microemulsion and nano-emulsion using geranium leaf aqueous extract as a reducing agent. Colloids Surf. A (2017).  https://doi.org/10.1016/j.colsurfa.2017.07.051 Google Scholar
  59. 59.
    S. Kaviya, J. Santhanalakshmi, B. Viswanathan, Green synthesis of silver nanoparticles using Polyalthia longifolia leaf extract along with D-sorbitol: study of antibacterial activity. J. Nanotech. (2011).  https://doi.org/10.1155/2011/152970 Google Scholar
  60. 60.
    A.A. Manal, A.H. Awatif, M.O.O. Khalid, F.A.E. Dalia, E.E. Nada, A.A. Lamia et al., Silver nanoparticles biogenic synthesized using an orange peel extract and their use as an orange peel extract and their use as an antibacterial agent. Int. J. Phys. Sci. 9(3), 34–40 (2014)Google Scholar
  61. 61.
    M. Shirmardi, A.R. Mesdaghinia, H. Mahvi, S. Nasseri, R. Nabizadeh, Kinetics and equilibrium studies on adsorption of acid red 18 (azo dye) using a multiwall carbon nanotube (MWCNTs) from aqueous solution. E J. Chem. 9, 476–484 (2012)Google Scholar
  62. 62.
    S. Cengiz, L. Cavas, Removal of methylene blue by invasive marine seaweed: Caulerparacemosa var. cylindracea. Bioresour. Technol. 99, 2357–2363 (2008)Google Scholar
  63. 63.
    Q.H. Hu, S.Z. Qiao, F. Haghseresht, Adsorption study for the removal of basic red dye using bentonite. Ind. Eng. Chem. Res. 45, 733–738 (2006)Google Scholar
  64. 64.
    D.D. Salman, W.S. Ulaiwi, N.M. Tariq, Determination the optimal conditions of methylene blue adsorption by the chicken egg shell membrane. Int. J. Poult. Sci. 11, 391–396 (2012)Google Scholar
  65. 65.
    R. Mohammadzadeh Kakhki, A. Karimian, H. Hasan-nejad, J. Inorg. Organomet. Polym. (2019).  https://doi.org/10.1007/s10904-019-01100-8 Google Scholar
  66. 66.
    L. Xu, X.C. Wu, J.J. Zhu, Green preparation and catalytic application of Pd nanoparticles. Nanotechnology 19, 305603 (2008)Google Scholar
  67. 67.
    R. Mohammadzadeh Kakhki, R. Tayebee, F. Ahsani, J. Mater. Sci.: Mater. Electron. 28, 5941 (2017)Google Scholar
  68. 68.
    K. Yamada, K. Miyajima, F. Mafune, J. Phys. Chem. C 111, 11246 (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Roya Mohammadzadeh Kakhki
    • 1
    Email author
  • Sara Hedayat
    • 1
  • Kobra Mohammadzadeh
    • 1
  1. 1.Department of Chemistry, Faculty of SciencesUniversity of GonabadGonabadIran

Personalised recommendations