Dielectric and Raman spectroscopy study of structural phase transformation of Sr-doped La2CoMnO6 double perovskite

  • Mushtaq Ahmad MagrayEmail author
  • M. IkramEmail author


Doping at rare earth site by divalent alkaline-earth ions in the double pervoskite system have noticed a variety of magnetic and electronic orders with spatially correlated charge, spin and orbital degree of freedom. In present report, we aim to study the structural, dielectric and magnetic properties of La2−xSrxCoMnO6\(\left( {x=0,{\text{ }}0.1,{\text{ }}0.3,{\text{ }}0.5} \right)\) samples synthesized by the solid-state reaction technique. Using powder X-ray diffraction and data analysis with Rietveld refinement a structural identification has been carried out. From high-temperature Raman spectra, a clear structural phase transformation from monoclinic with P21/n symmetry to a rhombohedral phase with R-3 symmetry was evidenced from the softening and an anomalous change in peak widths of both stretching (A1g) and anti-stretching (B1g) modes around 365K. The dielectric measurement is carried out for all the synthesized samples, a sudden change in dielectric constant (ε) and corresponding dielectric loss (tanδ) around 365 K in x = 0, x = 0.1, and x = 0.5 composition samples reflects a remarkable change in the tilts in oxygen octahedra which is because of the structural phase transformation. The susceptibility measurement was also performed to observe the ferromagnetic transitions. In partially ordered undoped and Sr-doped ceramic samples, relaxor-like behavior combined with a large dielectric constant (> 103) is observed. In this paper, successful attempts have been made to observe the structural phase transition through dielectric properties.



The authors acknowledge IUAC New Delhi and are grateful to Dr V.G Sathe, UGC-DAE CSR Indore, for providing Raman measurement facilities. The authors would also acknowledge NIT - Srinagar, Jammu and Kashmir, for providing financial support.


  1. 1.
    R.I. Dass, J.B. Goodenough, Multiple magnetic phases of La2CoMnO6 – δ (0 ≤ δ ≤ 0.05). Phys. Rev. B 67, 014401 (2003)CrossRefGoogle Scholar
  2. 2.
    T. Kyômen, R. Yamazaki, M. Itoh, Correlation between magnetic properties and Mn/Co, atomic order in LaMn0. 5Co0. 5O3+ δ: I. Second-order nature in Mn/Co atomic ordering and valence state. Chem. Mater. 15, 4798–4803 (2003)CrossRefGoogle Scholar
  3. 3.
    K.D. Truong, J. Laverdière, M.P. Singh, S. Jandl, P. Fournier, Impact of Co∕ Mn cation ordering on phonon anomalies in La2CoMnO6 double perovskites: Raman spectroscopy. Phys. Rev. B 76, 132413 (2007)CrossRefGoogle Scholar
  4. 4.
    M.P. Singh, K.D. Truong, P. Fournier, Magnetodielectric effect in double perovskite La2CoMnO6 thin films. Appl. Phys. Lett. 91, 042504 (2007)CrossRefGoogle Scholar
  5. 5.
    H.Z. Guo, A. Gupta, J. Zhang, M. Varela, S.J. Pennycook, Effect of oxygen concentration on the magnetic properties of La2CoMnO66 thin films. Appl. Phys. Lett. 91, 202509 (2007)CrossRefGoogle Scholar
  6. 6.
    M.P. Singh, S. Charpentier, K.D. Truong, P. Fournier, Evidence of bidomain structure in double-perovskite La2CoMnO6thin films. Appl. Phys. Lett. 90, 211915 (2007)CrossRefGoogle Scholar
  7. 7.
    H.Z. Guo, A. Gupta, T.G. Calvarese, M.A. Subramanian, Structural and magnetic properties of epitaxial thin films of the ordered double perovskite La2CoMnO6. Appl. Phys. Lett. 89, 262503 (2006)CrossRefGoogle Scholar
  8. 8.
    T. Burnus, Z. Hu, H.H. Hsieh, V.L. Joly, P.A. Joy, M.W. Haverkort, H. Wu, A. Tanaka, H.J. Lin, C.T. Chen, L.H. Tjeng, Local electronic structure and magnetic properties of LaMn0.5Co0.5O3 studied by X-ray absorption and magnetic circular dichroism spectroscopy. Phys. Rev. B 77, 125124 (2008)CrossRefGoogle Scholar
  9. 9.
    C.L. Bull, D. Gleeson, K.S. knight, Determination of B-site ordering and structural transformations in the mixed transition metal perovskites La2CoMnO6 and La2NiMnO6. J. Phys. 15, 4927–4936 (2003)Google Scholar
  10. 10.
    R.N. Mahato, K. Sethupathi, V. Sankaranarayanan, Colossal magnetoresistance in the double perovskite oxide La2CoMnO6. J. Appl. Phys. 107, 09D714 (2010)CrossRefGoogle Scholar
  11. 11.
    N.S. Rogado, J. Li, A.W. Sleight, M.A. Subramanian, Magnetocapacitance and magnetoresistance near room temperature in a ferromagnetic semiconductor La2NiMnO6. Adv. Mater. 17, 2225–2227 (2005)CrossRefGoogle Scholar
  12. 12.
    R.I. Dass, J.Q. Yan, J.B. Goodenough Oxygen stoichiometry, ferromagnetism, and transport properties of La2–x NiMnO 6+ δ. Phys. Rev. B 68, 064415 (2003)CrossRefGoogle Scholar
  13. 13.
    P. Padhan, H.Z. Guo, P. LeClair, A. Gupta, Dielectric relaxation and magnetodielectric response in epitaxial thin films of La2NiMnO6. Appl. Phys. Lett. 92, 022909 (2008)CrossRefGoogle Scholar
  14. 14.
    Y.Q. Lin, X.M. Chen, X.Q. Liu, Relaxor-like dielectric behavior in La2NiMnO6 double perovskite ceramics. Solid State Commun. 149, 784–787 (2009)CrossRefGoogle Scholar
  15. 15.
    S. Zhou, L. Shi, H. Yang, J. Zhao, Evidence of short-range magnetic ordering above TC in the double perovskite La2NiMnO6. Appl. Phys. Lett. 91, 172505 (2007)CrossRefGoogle Scholar
  16. 16.
    J.K. Murthy, K.D. Chandrasekhar, S. Murugavel, A. Venimadhav, Investigation of the intrinsic magnetodielectric effect in La2CoMnO6: role of magnetic disorder. J. Mater. Chem. C 3, 836–843 (2015)CrossRefGoogle Scholar
  17. 17.
    R.C. Sahoo, S. Das, T.K. Nath, Influence of magnetic frustration and structural disorder on magnetocaloric effect and magneto-transport properties in La1. 5Sr0. 5CoMnO6 double perovskite. J. Appl. Phys. 123, 013902 (2018)CrossRefGoogle Scholar
  18. 18.
    Q. Li, L. Xing, M. Xu, Electrical transport properties and enhanced magnetoresistance effect in double perovskite La2–xCaxCoMnO6 (0 ≤ x ≤ 0.5). Phys. Status Solidi 254, 1600757 (2017)CrossRefGoogle Scholar
  19. 19.
    J. Krishna Murthy, G. Jyotsna, P.S. Anil Kumar, Strain induced ferromagnetism and large magnetoresistance of epitaxial La1. 5Sr0. 5CoMnO6 thin films. J. Appl. Phys. 122, 065307 (2017)CrossRefGoogle Scholar
  20. 20.
    J. Krishna Murthy, K.D. Chandrasekhar, H.C. Wu, H.D. Yang, J.Y. Lin, A. Venimadhav, Antisite disorder driven spontaneous exchange bias effect in La2–xSrxCoMnO6 (0 ≤ x ≤ 1). J. Phys. 28, 086003 (2016)Google Scholar
  21. 21.
    T. Chatterji, B. Frick, H.S. Nair, Magnetic ordering in double perovskites R2CoMnO6 (R = Y, Tb) investigated by high resolution neutron spectroscopy. J. Phys. 24, 266005 (2012)Google Scholar
  22. 22.
    A.J. Barón-González, C. Frontera, J.L. García-Muñoz, B. Rivas-Murias, J. Blasco, Effect of cation disorder on structural, magnetic and dielectric properties of La2CoMnO6 double perovskite. J. Phys. 23, 496003 (2011)Google Scholar
  23. 23.
    D. Kumar, V.G. Sathe, Raman spectroscopic study of structural transformation in ordered double perovskites La2CoMnO6 bulk and epitaxial film. Solid State Commun. 224, 10–14 (2015)CrossRefGoogle Scholar
  24. 24.
    H. Chang, Y. Gao, F. Liu, Y. Liu, H. Zhu, Y. Yun, Effect of synthesis on structure, oxygen voids, valance bands, forbidden band gap and magnetic domain configuration of La2CoMnO6. J. Alloys Compd. 690, 8–14 (2017)CrossRefGoogle Scholar
  25. 25.
    S.A. Redfern, High-temperature structural phase transitions in perovskite. J. Phys. 8, 8267 (1996)Google Scholar
  26. 26.
    S. Li, L.C.Q. Huang, Y. Chen, J.W. Lynn, J. Hu, Y.L. Huang, F.C. Hsu, K.W. Yeh, M.K. Wu, P. Dai, First-order magnetic and structural phase transitions in Fe1+ySexTe1–x. Phys. Rev. B 79, 054503 (2009)CrossRefGoogle Scholar
  27. 27.
    Z. Salman, R.F. Kiefl, K.H. Chow, M.D. Hossain, T.A. Keeler, S.R. Kreitzman, C.D. Levy, R.I. Miller, T.J. Parolin, M.R. Pearson, H. Saadaoui, Near-surface structural phase transition of SrTiO3 studied with zero-field β-detected nuclear spin relaxation and resonance. Phys. Rev. Lett. 96, 147601 (2006)CrossRefGoogle Scholar
  28. 28.
    M. Šimėnas, A. Ciupa, M. Ma̧czka, A. Pöppl, J. Banys, EPR study of structural phase transition in manganese-doped [(CH3) 2NH2][Zn (HCOO)3] Metal–Organic Framework. J. Phys. Chem. C 119, 24522–24528 (2015)CrossRefGoogle Scholar
  29. 29.
    R.A. Cowley, S.M. Shapiro, Structural phase transitions. J. Phys. Soc. Jpn. 75, 111001 (2006)CrossRefGoogle Scholar
  30. 30.
    J.K. Murthy, A. Venimadhav, 4f-3d exchange coupling induced exchange bias and field induced Hopkinson peak effects in Gd2CoMnO6. J. Alloys Compd. 719, 341–346 (2017)CrossRefGoogle Scholar
  31. 31.
    R.X. Silva, A.S. de Menezes, R.M. Almeida, R.L. Moreira, R. Paniago, X. Marti, H. Reichlova, M. Maryško, M.V.D.S. Rezende, C.W.A. Paschoal, Structural order, magnetic and intrinsic dielectric properties of magnetoelectric La2CoMnO6. J. Alloys Compd. 661, 541–552 (2016)CrossRefGoogle Scholar
  32. 32.
    A.K. Nayak, M. Nicklas, S. Chadov, C. Shekhar, Y. Skourski, J. Winterlik, C. Felser, Large zero-field cooled exchange-bias in bulk Mn2PtGa. Phys. Rev. Lett. 110, 127204 (2013)CrossRefGoogle Scholar
  33. 33.
    T. Maity, S. Goswami, D. Bhattacharya, S. Roy, Superspin glass mediated giant spontaneous exchange bias in a nanocomposite of BiFeO3-Bi2Fe4O9. Phys. Rev. Lett. 110, 107201 (2013)CrossRefGoogle Scholar
  34. 34.
    M.N. Iliev, M.V. Abrashev, A.P. Litvinchuk, V.G. Hadjiev, H. Guo, A. Gupta, Raman spectroscopy of ordered double perovskite La2CoMnO6 thin films. Phys. Rev. B 75, 104118 (2007)CrossRefGoogle Scholar
  35. 35.
    J.Krishna Murthy, A. Venimadhav, Giant zero field cooled spontaneous exchange bias effect in phase separated La1. 5Sr0. 5CoMnO6. Appl. Phys. Lett. 103, 252410 (2013)CrossRefGoogle Scholar
  36. 36.
    P. Kameli, H. Salamati, Ac magnetic susceptibility of the self-doped manganites La0. 9–xSr0. 1MnO3 (x = 0.02 and 0.03). J. Alloys Compd 433, 11–17 (2007)CrossRefGoogle Scholar
  37. 37.
    K. Yoshii, N. Ikeda, M. Mizumaki, Magnetic and dielectric properties of the ruthenium double perovskites La2MRuO6 (M = Mg, Co, Ni, and Zn. Phys. Status Solidi 203, 2812–2817 (2006)CrossRefGoogle Scholar
  38. 38.
    M. Alexe, M. Ziese, D. Hesse, P. Esquinazi, K. Yamauchi, T. Fukushima, S. Picozzi, U. Gösele, Ferroelectric switching in multiferroic magnetite (Fe3O4) thin films. Adv. Mater. 21, 4452–4455 (2009)CrossRefGoogle Scholar
  39. 39.
    N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, H. Kitô, Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4. Nature 436, 1136 (2005)CrossRefGoogle Scholar
  40. 40.
    K. Yoshii, N. Ikeda, Y. Matsuo, Y. Horibe, S. Mori, Magnetic and dielectric properties of RFe2O4, FMO4, and RGaCuO4 (R = Yb and Lu, M = Co and Cu). Phys. Rev. B 76, 024423 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of TechnologyHazratbal, SrinagarIndia

Personalised recommendations