Advertisement

Synthesis and characterization of Mg–Ti substituted barium hexaferrite (BaMg0.6Ti0.6Fe10.8O19) derived from millscale waste for microwave application

  • Nurshahiera RosdiEmail author
  • Raba′ah Syahidah AzisEmail author
  • Muhammad Syazwan Mustaffa
  • Nor Hapishah Abdullah
  • Syazana Sulaiman
  • Tan Tong Ling
Article
  • 15 Downloads

Abstract

Mg–Ti substituted barium hexaferrite (BaMg0.6Ti0.6Fe10.8O19) nanoparticles prepared by using steel millscale waste have been investigated towards the structural, magnetic and microwave properties. The samples were prepared using high-energy ball milling technique with the hematite (Fe2O3) as the raw utilized and processed from millscale waste product. The peaks with a single phase hexagonal structure of BaMg0.6Ti0.6Fe10.8O19 are identified at 1000 °C revealed from X-ray diffraction analysis. Higher saturation magnetization, Ms, with high crystallinity was observed in the sample due to the enhancement of superexchange interaction within the sample. The best maximum reflection loss of − 22.59 dB at the frequency and bandwidth of 9.42 GHz and 0.14 GHz was achieved in sample sintered at 1000 °C.

Notes

Acknowledgements

The authors would like to thank Institute of Advanced Technology (ITMA) and Department of Physics, Faculty of Science, Universiti Putra Malaysia (UPM) Serdang, Selangor, Malaysia for the measurements facilities and to Synchotron Light Research Institute (SLRI), Thailand for providing the services for Photoelectron Emission Spectroscopy. The authors also would like to thank the Universiti Putra Malaysia (Grant No. UPM/800-3/1/GP-IPS/9533300), (Grant No. UPM/700-2/GP-IPS/9580600) and (Grant No. UPM/700-1/2/2017/Geran Impak/9541600) for the financial supports.

References

  1. 1.
    X. Tang, K. Hu, Preparation and electromagnetic wave absorption properties of Fe-doped zinc oxide coated barium ferrite composites. Mater. Sci. Eng. B 139, 119–123 (2007)CrossRefGoogle Scholar
  2. 2.
    M.M. Syazwan, M. Hashim, R.S. Azis, I. Ismail, S. Kanagesan, A.N. Hapishah, Enhancing absorption properties of Mg-Ti substituted barium hexaferrite nanocomposite through the addition of MWCNT. J. Mater. Sci.: Mater. Electron. 28(12), 8429–8436 (2017)Google Scholar
  3. 3.
    R.S. Alam, M. Moradi, M. Rostami, H. Nikmanesh, R. Moayedi, Y. Bai, Structural, magnetic and microwave absorption properties of doped Ba-hexaferrite nanoparticles synthesized by co-precipitation method. J. Magn. Magn. Mater. 381, 1–9 (2015)CrossRefGoogle Scholar
  4. 4.
    A.M. Gama, M.C. Rezende, C.C. Dantas, Dependence of microwave absorption properties on ferrite volume fraction in MnZn ferrite/rubber radar absorbing materials. J. Magn. Magn. Mater. 323(22), 2782–2785 (2011)CrossRefGoogle Scholar
  5. 5.
    A.N. Hapishah, M.M. Syazwan, M.N. Hamidon, Synthesis and characterization of magnetic and microwave absorbing properties in polycrystalline cobalt zinc ferrite (Co0.5Zn0.5Fe2O4) composite. J. Mater. Sci.: Mater. Electron. 29, 20573–20579 (2018)Google Scholar
  6. 6.
    M.M. Syazwan, R.S. Azis, M. Hashim, I. Ismayadi, S. Kanagesan, A.N. Hapishah, Co-Ti-and Mn-Ti-substituted barium ferrite for electromagnetic property tuning and enhanced microwave absorption synthesized via mechanical alloying. J. Aust. Ceram. Soc. 53, 465–474 (2017)CrossRefGoogle Scholar
  7. 7.
    N.N. Che Muda, R.S. Azis, M. Hashim, J. Hassan, S. Sulaiman, N. Daud, M. Sharani, N.M. Azizan, A.H. Musa, M.A, Synthesis and characterization of barium hexaferrites derived from steel waste by ammonium nitrate salt melt synthesis. J. Solid State Sci. Technol. Lett. 16, 73–77 (2015)Google Scholar
  8. 8.
    A.H. Azizan, R.S. Azis, J. Hassan, M. Hashim, N.M. Mohd Shahrani, N. Daud, S. Sulaiman, C. Muda, N.N. Musa, M.A, Structural and magnetic properties of aluminum substituted yttrium iron garnet via sol-gel synthesis. J. Solid State Sci. Technol. Lett. 16, 58–61 (2015)Google Scholar
  9. 9.
    R.S. Azis, M. Hashim, N.M. Saiden, N. Daud, N.N. Shahrani, Study the iron environments of the steel waste product and its possible potential applications in ferrites. Adv. Mater. Res. 1109, 295–299 (2015)CrossRefGoogle Scholar
  10. 10.
    R.S. Azis, M. Hashim, N.M. Saiden, N. Daud, N.M.M. Shahrani, Study the iron environments of the steel waste product and its possible potential applications in ferrites. Adv. Mater. Res. 1109, 295–299 (2015)CrossRefGoogle Scholar
  11. 11.
    R.S. Azis, M.M. Syazwan, N.M.M. Shahrani, A.N. Hapishah, R. Nazlan, F.M. Idris, I. Ismail, M.M.M. Zulkimi, I.R. Ibrahim, Z. Abbas, N.M. Saiden, Influence of sintering temperature on the structural, electrical and microwave properties of yttrium iron garnet (YIG). J. Mater. Sci. Mater. Electron. 29, 8390–8401 (2018)CrossRefGoogle Scholar
  12. 12.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, Nanocrystalline Ce-doped copper ferrite: synthesis, characterization, and its photocatalyst application. J. Mater. Sci. Mater. Electron. 27, 11691–11697 (2016)CrossRefGoogle Scholar
  13. 13.
    A. Sobhani-Nasab, A. Ziarati, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Five-component domino synthesis of tetrahydropyridines using hexagonal PbCrxFe12–2xO19 as efficient magnetic nanocatalyst. Res. Chem. Intermed. 43, 6155–6165 (2017)CrossRefGoogle Scholar
  14. 14.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, ZnFe2−x LaxO4 nanostructure: synthesis, characterization, and its magnetic properties. J. Mater. Sci. Mater. Electron. 26, 9776–9781 (2015)CrossRefGoogle Scholar
  15. 15.
    S.M. Asgarian, S. Pourmasoud, Z. Kargar, A. Sobhani-Nasab, M. Eghbali-Arani, Investigation of positron annihilation lifetime and magnetic properties of Co1–xCuxFe2O4 nanoparticles. Mater. Res. Exp. 6, 015023‏ (2018)CrossRefGoogle Scholar
  16. 16.
    V.V. Soman, V.M. Nanoti, D.K. Kulkarni, Dielectric and magnetic properties of Mg-Ti substituted barium hexaferrite. Ceram. Int. 39(5), 5713–5723 (2013)CrossRefGoogle Scholar
  17. 17.
    M. Cernea, S.G. Sandu, C. Galassi, R. Radu, V. Kuncser, Magnetic properties of BaxSr1–xFe12O19 (x = 0.05–0.35) ferrites prepared by different methods. J. Alloys Compd. 561, 121–128 (2013)CrossRefGoogle Scholar
  18. 18.
    S.B. Narang, S.K. Chawla, R.K. Mudsainiyan, K. Pubby, Comparative dielectric analysis of Co-Zr doped M-type barium hexaferrites BaCoxZrxFe(12–2x)O19 prepared by different wet chemical routes. Integr. Ferroelectr. 167, 98–106 (2015)CrossRefGoogle Scholar
  19. 19.
    C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121–124 (1951)CrossRefGoogle Scholar
  20. 20.
    E. Michielssen, J. Sajer, S. Ranjithan, R. Mittra, Design of light-weight, broad-band microwave absorbers using genetic algorithms. IEEE Trans. Microw. Theory Tech. 41, 1024–1031 (1993)CrossRefGoogle Scholar
  21. 21.
    S. Sugimoto, S. Kondo, K. Okayama, H. Nakamura, D. Book, T. Kagotani, H. Homma, H. Ota, M. Kimura, R. Sato, M-type ferrite composite as a microwave absorber with wide bandwidth in the GHz range. IEEE Trans. Magn. 35, 3154–3156 (1999)CrossRefGoogle Scholar
  22. 22.
    P. Xu, X.J. Han, C. Wang, D.H. Zhou, Z.S. Lv, A.H. Wen, X.H. Wang, B. Zhang, Synthesis of electromagnetic functionalized nickel/polypyrrole core/shell composites. J. Phys. Chem. B 112, 10443–10448 (2008)CrossRefGoogle Scholar
  23. 23.
    P.J. Van der Zaag, J.J.M. Ruigrok, A. Noordermeer, M.H.W.M. Van delden, The initial permeability of polycrystalline MnZn ferrites: the influence of domain and microstructure. J. Appl. Phys. 74, 4085–4095 (1993)CrossRefGoogle Scholar
  24. 24.
    A. Baniasadi, A. Ghasemi, A. Nemati, M.A. Ghadikolaei, E. Paimozd, Effect of Ti-Zn substitution on structural, magnetic and microwave absorption characteristics of strontium hexaferrite. J. Alloys Compd. 583, 325–328 (2014)CrossRefGoogle Scholar
  25. 25.
    E. Kiani, A.S.H. Rozatian, M.H. Yousefi, Structural, magnetic and microwave absorption properties of SrFe12–2x(Mn0.5Cd0.5Zr)xO19 ferrite. J. Magn. Magn. Mater. 361, 25–29 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nurshahiera Rosdi
    • 1
    Email author
  • Raba′ah Syahidah Azis
    • 1
    • 2
    Email author
  • Muhammad Syazwan Mustaffa
    • 2
  • Nor Hapishah Abdullah
    • 3
  • Syazana Sulaiman
    • 1
  • Tan Tong Ling
    • 4
  1. 1.Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA)Universiti Putra MalaysiaSerdangMalaysia
  2. 2.Department of Physics, Faculty of ScienceUniversiti Putra MalaysiaSerdangMalaysia
  3. 3.Functional Devices Laboratory (FDL), Institute of Advanced Technology (ITMA)Universiti Putra MalaysiaSerdangMalaysia
  4. 4.Materials Processing and Technology Laboratory (MPTL), Institute of Advanced Technology (ITMA)Universiti Putra MalaysiaSerdangMalaysia

Personalised recommendations