Improving the optoelectrical properties of Cu2ZnSnS4 using gold and graphene nano-fillers

  • Atul Kumar
  • Ajay D. ThakurEmail author


We have investigated photo-response of Cu2ZnSnS4 (CZTS) and have explored ways for enhancing the photo-response and conductivity using suitable nano-compositing strategies. In phase pure CZTS, gold nanoparticles and graphene flakes are used as nanofillers to make nano-composite samples. Photo-response of as-grown CZTS is improved by compositing gold with the observation of Ilight/Idark=1.29. With increasing gold nanoparticle size conductivity improved for CZTS gold composite. Compositing 1% graphene by weight has enhanced the current flow in the CTZS by 125 times. The graphene weight ratio in the composite is limited by absorbance reduction. The demonstrated high-quality CZTS nano-composite samples with improved optoelectrical properties holds tremendous promise for photovoltaic applications.



The authors thank Ministry of Human Resource Development (MHRD), Government of India for financial support.


  1. 1.
    H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of EB evaporated precursors. Sol. Energy Mater. Sol. Cells 49, 407 (1997)CrossRefGoogle Scholar
  2. 2.
    K.J. Tiwari, D.S. Prem Kumar, R.C. Mallik, P. Malar, Ball mill synthesis of bulk quaternary Cu2ZnSnSe4 and thermoelectric. J. Electron. Mater. 46, 30 (2017)CrossRefGoogle Scholar
  3. 3.
    K.V. Gaurav, S.W. Shin, U.M. Patil, P.R. Deshmukh, M.P. Suryawanshi, G.L. Agawane, S.M. Pawar, P.S. Patil, J.Y. Lee, C.D. Lokhande, J.H. Kim, Cu2ZnSnS4 (CZTS)-based room temperature liquefied petroleum gas (LPG) sensor. Sensors Actuators B 190, 408 (2014)CrossRefGoogle Scholar
  4. 4.
    W. Zhou, Y. Zhou, J. Feng, J. Zhang, S. Wu, X. Guo, X. Cao, Solvothermal synthesis of flower-like Cu2ZnSnS4 nanostructures and their application as anode materials for lithium-ion batteries. Chem. Phys. Lett. 546, 115 (2012)CrossRefGoogle Scholar
  5. 5.
    J. Wang, P. Zhang, X. Song, L. Gao, Surfactant-free hydrothermal synthesis of Cu2ZnSnS4 (CZTS) nanocrystals with photocatalytic properties. RSC Adv. 4, 27805–27810 (2014)CrossRefGoogle Scholar
  6. 6.
    F. Jiang, H. Shen, Research on the photoresponse current and photosensitive properties of Cu2ZnSnS4 thin film prepared by sulfurization of a sputtered metal precursor. RSC Adv. 3, 23474 (2013)CrossRefGoogle Scholar
  7. 7.
    C. Wadia, A.P. Alivisatos, D.M. Kammen, Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ. Sci. Technol. 43, 2072 (2009)CrossRefGoogle Scholar
  8. 8.
    A. Elshkaki, T.E. Graedel, Solar cell metals, and their hosts: a tale of oversupply and undersupply. Appl. Energy 158, 167–177 (2015)CrossRefGoogle Scholar
  9. 9.
    A. Walsh, S. Chen, S. Wei, X. Gong, Kesterite thin-film solar cells: advances in materials modelling of Cu2ZnSnS4. Adv. Energy Mater. 2, 400 (2012)CrossRefGoogle Scholar
  10. 10.
    T. Gershon, T. Gokmen, O. Gunawan, R. Haight, S. Guha, B. Shin, Understanding the relationship between Cu2ZnSn(S,Se)4 material properties and device performance. MRS Commun. 4, 159 (2014)CrossRefGoogle Scholar
  11. 11.
    A. Polizzotti, I.L. Repins, R. Noufi, S.-H. Wei, D.B. Mitzi, The state and future prospects of kesterite photovoltaics. Energy Environ. Sci. 6, 3171 (2013)CrossRefGoogle Scholar
  12. 12.
    S. Chen, L. Wang, A. Walsh, X.G. Gong, S. Wei, Abundance of CuZn + SnZn and 2CuZn + SnZn defect clusters in kesterite solar cells. Appl. Phys. Lett. 101, 223901 (2012)CrossRefGoogle Scholar
  13. 13.
    C.-Y. Su, C.-Y. Chiu, J.-M. Ting, Cu2ZnSnS4 absorption layers with controlled phase purity. Sci. Rep. 5, 9291 (2015)CrossRefGoogle Scholar
  14. 14.
    M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, Q. Qiao, Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS–Se solar cells. Energy Environ. Sci. 8, 3134 (2015)CrossRefGoogle Scholar
  15. 15.
    N. Muhunthan, O.P. Singh, V.N. Singh, K.N. Sood, Rashmi, *Electric field-effect-assisted persistent photoconductivity in CZTS. Adv. Mater. Lett. 6, 290 (2015)Google Scholar
  16. 16.
    J.C. González, G.M. Ribeiro, E.R. Viana, P.A. Fernandes, P.M.P. Salomé, K. Gutiérrez, A. Abelenda, F.M. Matinaga, J.P. Leitão, A.F. da Cunha, Hopping conduction and persistent photoconductivity in Cu2ZnSnS4 thin films. J. Phys. D Appl. Phys. 46, 155107 (2013)CrossRefGoogle Scholar
  17. 17.
    A. Abelenda, M. Sánchez, G.M. Ribeiro, P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, J.P. Leitão, M.I.N. da Silva, J.C. González, Anomalous persistent photoconductivity in Cu2ZnSnS4 thin films and solar cells. Sol. Energy Mater. Sol. Cells 137, 164 (2015)CrossRefGoogle Scholar
  18. 18.
    F. Jiang, H. Shen, W. Wang, Optical and electrical properties of Cu2ZnSnS4 film prepared by sulfurization method. J. Electron. Mater. 41, 8 (2012)Google Scholar
  19. 19.
    K.S. Gour, O.P. Singh, B. Bhattacharyya, R. Parmar, S. Husale, T.D. Senguttuvan, V.N. Singh, Enhanced photoresponse of Cu2ZnSn(S,Se)4 based photodetector in visible range. J. Alloys Compd. 694, 119 (2017)CrossRefGoogle Scholar
  20. 20.
    O.P. Singh, A. Sharma, K.S. Gour, S. Husale, V.N. Singh, Fast switching response of Na-doped CZTS photodetector from visible to NIR range. Sol. Energy Mater. Sol. Cells 157, 28 (2016)CrossRefGoogle Scholar
  21. 21.
    F. Al-Hazmi, F. Yakuphanoglu, Cu2ZnSnS4: graphene oxide nano-composites based photoresponse devices. J. Alloys Compd. 653, 561 (2015)CrossRefGoogle Scholar
  22. 22.
    M. Banavoth, S. Dias, S.B. Krupanidhi, Near-infrared photoactive Cu2ZnSnS4 thin films by co-sputtering. AIP Adv. 3, 082132 (2013)CrossRefGoogle Scholar
  23. 23.
    T.K. Chaudhuri, D. Tiwari, Earth-abundant non-toxic Cu2ZnSnS4 thin films by direct liquid coating from metal–thiourea precursor solution. Sol. Energy Mater. Sol. Cells 101, 46–50 (2012)CrossRefGoogle Scholar
  24. 24.
    W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510 (1961)CrossRefGoogle Scholar
  25. 25.
    G.S. Paul, P. Agarwal, Persistent photocurrent and decay studies in CdS nanorods thin films. J. Appl. Phys. 106, 103705 (2009)CrossRefGoogle Scholar
  26. 26.
    Th. Meyer, F. Engelhardt, J. Parisi, U. Rau, Spectral dependence and Hall effect of persistent photoconductivity in polycrystalline CuInGaSe2 thin films. J. Appl. Phys. 91, 5093 (2002)CrossRefGoogle Scholar
  27. 27.
    A. Yadav, P. Agarwal, Persistent photoconductivity studies in a-Si:H/nc-Si:H thin film. Superlattices Microstruct. 85, 776–783 (2015)CrossRefGoogle Scholar
  28. 28.
    D.P. Suhas, T.M. Aminabhavi, H.M. Jeong, A.V. Raghu, Hydrogen peroxide treated graphene as an effective nanosheet filler for separation application. RSC Adv. 5, 100984 (2015)CrossRefGoogle Scholar
  29. 29.
    S.P. Dharupaneedi, R.V. Anjanapura, J.M. Han, T.M. Aminabhavi, Functionalized graphene sheets embedded in chitosan nanocomposite membranes for ethanol and isopropanol dehydration via pervaporation. Ind. Eng. Chem. Res. 53, 14474–14484 (2014)CrossRefGoogle Scholar
  30. 30.
    D.R. Son, A.V. Raghu, K.R. Reddy, H.M. Jeong, Compatibility of thermally reduced graphene with polyesters. J. Macromol. Sci. Part B 55(11), 1099–1110 (2016)CrossRefGoogle Scholar
  31. 31.
    S.J. Han, H.-I. Lee, H.M. Jeong, B.K. Kim, A.V. Raghu, K.R. eddy, Graphene modified lipophilically by stearic acid and its composite with low density polyethylene. J. Macromol. Sci. Part B 53(7), 1193–1204 (2014)CrossRefGoogle Scholar
  32. 32.
    K.T. Kim, T.D. Dao, H.M. Jeong, R.V. Anjanapura, T.M. Aminabhavi, Graphene coated with alumina and its utilization as a thermal conductivity enhancer for alumina sphere/thermoplastic polyurethane composite. Mater. Chem. Phys. 153, 291–300 (2015)CrossRefGoogle Scholar
  33. 33.
    M. Rycenga, C.M. Cobley, J. Zeng, W. Li, C.H. Moran, Q. Zhang, D. Qin, Y. Xia, Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111(6), 3669–3712 (2011)CrossRefGoogle Scholar
  34. 34.
    I. Chakraborty, K.J. Bodurtha, N.J. Heeder, M.P. Godfrin, A. Tripathi, R.H. Hurt, A. Shukla, A. Bose, Massive electrical conductivity enhancement of multilayer graphene/polystyrene composites using a nonconductive filler. ACS Appl. Mater. Interfaces 6, 16472–16475 (2014)CrossRefGoogle Scholar
  35. 35.
    W. Lü, J. Chen, Y. Wu, L. Duan, Y. Yang, X. Ge, Graphene-enhanced visible-light photocatalysis of large-sized CdS particles for wastewater treatment. Nanoscale Res. Lett. 9, 148 (2014)CrossRefGoogle Scholar
  36. 36.
    P.S. Chandrasekhar, V.K. Komarala, Graphene/ZnO nanocomposite as an electron transport layer for perovskite solar cells; the effect of graphene concentration on photovoltaic performance. RSC Adv. 7, 28610 (2017)CrossRefGoogle Scholar
  37. 37.
    L.Y. Ozer, C. Garlisi, H. Oladipo, M. Pagliaro, S.A. Sharief, A. Yusuf, S. Almheiri, G. Palmisano, Inorganic semiconductors-graphene composites in photo(electro)catalysis: synthetic strategies, interaction mechanisms and applications. J. Photochem. Photobiol. C Photobiochem. Rev. 33, 132–164 (2017)CrossRefGoogle Scholar
  38. 38.
    N. Gao, X. Fang, Synthesis and development of graphene—inorganic semiconductor nanocomposites. Chem. Rev. 115, 8294–8343 (2015)CrossRefGoogle Scholar
  39. 39.
    E. Ha, W. Liu, L. Wang, H.W. Man, L. Hu, S.C. Tsang, C.T. Chan, W.M. Kwok, L.Y. Lee, K.Y. Wong, Cu2ZnSnS4/MoS2-reduced graphene oxide heterostructure: nanoscale interfacial contact and enhanced photocatalytic hydrogen generation. Sci. Rep. 7, 39411 (2017)CrossRefGoogle Scholar
  40. 40.
    S. Das, K. Sa, I. Alam, P. Mahanandia, Synthesis of CZTS QDs decorated reduced graphene oxide. Mater. Lett. 232, 232–236 (2018)CrossRefGoogle Scholar
  41. 41.
    S.-J. Lin, J.-M. Ting, K.-C. Hsu, Y.-S. Fu, A composite photocatalyst based on hydrothermally-synthesized Cu2ZnSnS4 powders. Materials 11, 158 (2018)CrossRefGoogle Scholar
  42. 42.
    Y.C. Yen, J.-A. Chen, S. Ou, Y.-S. Chen, K.-J. Lin, Plasmon-enhanced photocurrent using gold nanoparticles on a three-dimensional TiO2 nanowire-web electrode. Sci. Rep. 7, 42524 (2017)CrossRefGoogle Scholar
  43. 43.
    M.-S. Son, J.-E. Im, K.-K. Wang, S.-L. Oh, Y.-R. Kim, K.-H. Yoo, Surface plasmon enhanced photoconductance and single electron effects in mesoporous titania nanofibers loaded with gold nanoparticles. Appl. Phys. Lett. 96, 023115 (2010)CrossRefGoogle Scholar
  44. 44.
    P.S. Archana, N. Pachauri, Z. Shan, S. Pan, A. Gupta, Plasmonic enhancement of photoactivity by gold nanoparticles embedded in hematite films. J. Phys. Chem. C 119, 15506–15516 (2015)CrossRefGoogle Scholar
  45. 45.
    W. Pao, C.-T. Wu, H.-M. Tsai, Y.-S. Liu, C.-L. Chang, W.F. Pong, J.-W. Chiou, C.W. Chen, M.-S. Hu, M.-W. Chu, L.-C. Chen, C.-H. Chen, K.-H. Chen, S.-B. Wang, S.-J. Chang, M.-H. Tsai, H.-J. Lin, J.-F. Lee, J.-H. Guo, Photoconduction and the electronic structure of silica nanowires embedded with gold nanoparticles. Phys. Rev. B 84, 165412 (2011)CrossRefGoogle Scholar
  46. 46.
    Q. Jiang, C. Ji, D.J. Riley, F. Xie, Boosting the efficiency of photoelectrolysis by the addition of non-noble plasmonic metals: Al & Cu. Nanomaterials 9, 1 (2019)CrossRefGoogle Scholar
  47. 47.
    G. Faraone, R. Modi, S. Marom, A. Podest, M. Di Vece, Increasing the optical absorption in a-Si thin films by embedding gold nanoparticles. Opt. Mater. 75, 204–210 (2018)CrossRefGoogle Scholar
  48. 48.
    S. Dhara, P.K. Giri, On the origin of enhanced photoconduction and photoluminescence from Au and Ti nanoparticles decorated aligned ZnO nanowire heterostructures. J. Appl. Phys. 110, 124317 (2011)CrossRefGoogle Scholar
  49. 49.
    K. Patra, A.K. Guria, A. Dutta, A. Shit, N. Pradhan, Au–SnS hetero nanostructures: size of Au Matters. Chem. Mater. 26, 7194–7200 (2014)CrossRefGoogle Scholar
  50. 50.
    X. Yu, A. Shavel, X. An, Z. Luo, M. Ibáñez, A. Cabot, Cu2ZnSnS4–Pt and Cu2ZnSnS4–Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation. J. Am. Chem. Soc. 136, 9236–9239 (2014)CrossRefGoogle Scholar
  51. 51.
    X. Zhang, X. Wu, A. Centeno, M.P. Ryan, N.M. Alford, D.J. Riley, F. Xie, Significant broadband photocurrent enhancement by Au-CZTS core–shell nanostructured photocathodes. Sci. Rep. 6, 23364 (2016)CrossRefGoogle Scholar
  52. 52.
    P.S. Dilsaver, M.D. Reichert, B.L. Hallmark, M.J. Thompson, J. Vela, Cu2ZnSnS4–Au heterostructures: toward greener chalcogenide-based photocatalysts. J. Phys. Chem. C 118, 21226–21234 (2014)CrossRefGoogle Scholar
  53. 53.
    P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. J. Alloys Compd. 509, 7600–7606 (2011)CrossRefGoogle Scholar
  54. 54.
    W.C. Liu, B.L. Guo, X.S. Wu, F.M. Zhang, C.L. Mak, K.H. Wong, Facile hydrothermal synthesis of hydrotropic Cu2ZnSnS4 nanocrystal quantum dots: band-gap engineering and phonon confinement effect. J. Mater. Chem. A 1, 3182–3186 (2013)CrossRefGoogle Scholar
  55. 55.
    M. Hurtado, S.D. Cruz, R.A. Becerra, C. Calderón, P. Bartolo-Pérez, G. Gordillo, XPS analysis and structural characterization of CZTS thin films prepared using solution and vacuum based deposition techniques. 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, 2014Google Scholar
  56. 56.
    Q. Wen, Y. Li, J.Yan,C. Wang, Crystal size-controlled growth of Cu2ZnSnS4 films by optimizing the Na doping concentration. Mater. Lett. 140, 16 (2015)CrossRefGoogle Scholar
  57. 57.
    F. López-Vergara, A. Galdámez, V. Manríquez, G. González, Crystal structure and Raman scattering characterization of Cu2Fe1–xCoxSnS4 chalcogenide compounds. Solid State Sci. 49, 54–60 (2015)CrossRefGoogle Scholar
  58. 58.
    O. Pal Singh, N. Muhunthan, K.S. Gour, R. Parmar, M. Dalai, P. Kulriya, S. Pillai, V.N. Singh, Effect of sputter deposited Zn precursor film thickness and annealing time on the properties of Cu2ZnSnS4 thin films deposited by sequential reactive sputtering of metal targets. Mater. Sci. Semicond. Process. 52, 38–45 (2016)CrossRefGoogle Scholar
  59. 59.
    F. Ruffino, V. Torrisi, G. Marletta, M. Grazia Grimaldi, Atomic force microscopy investigation of the kinetic growth mechanisms of sputtered nanostructured Au film on mica: towards a nanoscale morphology control. Nanoscale Res. Lett. 6, 112 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology PatnaBihtaIndia

Personalised recommendations