Skip to main content
Log in

In situ deposition of black α-FAPbI3 films by vacuum flash evaporation for solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Formamidinium lead iodide (FAPbI3) is a promising candidate as the solar cell absorption layer with a suitable band gap of 1.45 eV and excellent optoelectronic properties. In this work, we report a new vacuum flash evaporation method to deposit phase-pure black α-FAPbI3 films in situ on low-temperature substrates without post-annealing, and the area of deposited films can be up to 36 cm2 (6 cm × 6 cm). Besides, the unique relationship between substrate temperature and phases in films is demonstrated for the further development of the method. With the α-FAPbI3 films as the active layer, perovskite solar cells with power conversion efficiency of 12.55% are fabricated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T.M. Akihiro, K. Kojima, Y. Teshima, Shirai, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Article  Google Scholar 

  2. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)

    Article  Google Scholar 

  3. J.Y. Jeng, Y.F. Chiang, M.H. Lee, S.R. Peng, T.F. Guo, P. Chen, T.C. Wen, CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25, 3727–3732 (2013)

    Article  Google Scholar 

  4. H.S. Kim, I. Mora-Sero, V. Gonzalez-Pedro, F. Fabregat-Santiago, E.J. Juarez-Perez, N.G. Park, J. Bisquert, Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat. Commun. 4, 1–7 (2013)

    Google Scholar 

  5. N.G. Park, Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 4, 2423–2429 (2013)

    Article  Google Scholar 

  6. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 Micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013)

    Article  Google Scholar 

  7. G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Graẗzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013)

    Article  Google Scholar 

  8. A. Abrusci, S.D. Stranks, P. Docampo, H.L. Yip, A.K.Y. Jen, H.J. Snaith, High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. Nano Lett. 13, 3124–3128 (2013)

    Article  Google Scholar 

  9. M.J. Carnie, C. Charbonneau, M.L. Davies, J. Troughton, T.M. Watson, K. Wojciechowski, H. Snaith, D.A. Worsley, A one-step low temperature processing route for organolead halide perovskite solar cells. Chem. Commun. 49, 7893–7895 (2013)

    Article  Google Scholar 

  10. G. Hodes, Perovskite-based solar cells. Science 342, 317–318 (2013)

    Article  Google Scholar 

  11. Y. Hishikawa, E.D. Dunlop, D.H. Levi, M.A. Green, J. Hohl, E. Masahiro, Y. Anita, W.Y.H. Baillie, Solar cell efficiency tables (Version 53), Prog. Photovoltaics Res. Appl. 2, 3–12 (2019)

    Google Scholar 

  12. V.L. Pool, B. Dou, D.G. Van Campen, T.R. Klein-Stockert, F.S. Barnes, S.E. Shaheen, M.I. Ahmad, M.F.A.M. Van Hest, M.F. Toney, Thermal engineering of FAPbI3 perovskite material via radiative thermal annealing and in situ XRD. Nat. Commun. 8, 1–8 (2017)

    Article  Google Scholar 

  13. S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, G. Cui, NH2CH = NH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem. Mater. 26, 1485–1491 (2014)

    Article  Google Scholar 

  14. N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S. Il Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015)

    Article  Google Scholar 

  15. L.-C. Chen, J.-R. Wu, Z.-L. Tseng, C.-C. Chen, S. Chang, J.-K. Huang, K.-L. Lee, H.-M. Cheng, Annealing effect on (FAPbI3)1–x(MAPbBr3)x perovskite films in inverted-type perovskite solar cells. Materials 9, 747 (2016)

    Article  Google Scholar 

  16. C. Wu, X. Zheng, Q. Yang, Y. Yan, M. Sanghadasa, S. Priya, Crystallization of HC(NH2)2PbI3 black polymorph by solvent intercalation for low temperature solution processing of perovskite solar cells. J. Phys. Chem. C 120, 26710–26719 (2016)

    Article  Google Scholar 

  17. S. Wozny, M. Yang, A.M. Nardes, C.C. Mercado, S. Ferrere, M.O. Reese, W. Zhou, K. Zhu, Controlled humidity study on the formation of higher efficiency formamidinium lead triiodide-based solar cells. Chem. Mater. 27, 4814–4820 (2015)

    Article  Google Scholar 

  18. J. Ye, H. Zheng, L. Zhu, X. Zhang, L. Jiang, W. Chen, G. Liu, X. Pan, S. Dai, High-temperature shaping perovskite film crystallization for solar cell fast preparation. Sol. Energy Mater. Sol. Cells 160, 60–66 (2017)

    Article  Google Scholar 

  19. X. Xu, Q. Chen, Z. Hong, H. Zhou, Z. Liu, W.H. Chang, P. Sun, H. Chen, N. De Marco, M. Wang, Y. Yang, Working mechanism for flexible perovskite solar cells with simplified architecture. Nano Lett. 15, 6514–6520 (2015)

    Article  Google Scholar 

  20. W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S. Il, Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015)

    Article  Google Scholar 

  21. H. Xu, Y. Wu, F. Xu, J. Zhu, C. Ni, W. Wang, F. Hong, R. Xu, F. Xu, J. Huang, L. Wang, Grain growth study of perovskite thin films prepared by flash evaporation and its effect on solar cell performance. RSC Adv. 6, 48851–48857 (2016)

    Article  Google Scholar 

  22. A.F. da Silva, N. Veissid, C.Y. An, Optical determination of the direct bandgap energy of lead iodide crystals. Appl. Phys. Lett. 69, 1930 (1996)

    Article  Google Scholar 

  23. M. Shkir, H. Abbas, Z. Raza, Journal of Physics and Chemistry of Solids Effect of thickness on the structural, optical and electrical properties of thermally evaporated PbI2 thin films. J. Phys. Chem. Solids 73, 1309–1313 (2012)

    Article  Google Scholar 

  24. Z. Wang, Y. Zhou, S. Pang, Z. Xiao, J. Zhang, W. Chai, H. Xu, Z. Liu, N.P. Padture, G. Cui, Additive-modulated evolution of HC(NH2)2PbI3 black polymorph for mesoscopic perovskite solar cells. Chem. Mater. 27, 7149–7155 (2015)

    Article  Google Scholar 

  25. T.M. Koh, K. Fu, Y. Fang, S. Chen, T.C. Sum, N. Mathews, S.G. Mhaisalkar, P.P. Boix, T. Baikie, Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. J. Phys. Chem. C 118, 16458–16462 (2014)

    Article  Google Scholar 

  26. G. Longo, L. Gil-Escrig, M.J. Degen, M. Sessolo, H.J. Bolink, Perovskite solar cells prepared by flash evaporation. Chem. Commun. 51, 7376–7378 (2015)

    Article  Google Scholar 

  27. J. Borchert, R.L. Milot, J.B. Patel, C.L. Davies, A.D. Wright, L. Mart, H.J. Snaith, L.M. Herz, M.B. Johnston, Large-area, highly uniform evaporated formamidinium lead triiodide thin films for solar cells. ACS Energy Lett. 2, 2799–2804 (2017)

    Article  Google Scholar 

  28. T. Leijtens, K. Bush, R. Cheacharoen, R. Beal, A. Bowring, M.D. Mcgehee, Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and thermal stability. J. Mater. Chem. A 5, 11483–11500 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51872186 and 51672172), the Zhejiang Provincial Natural Science Foundation (Grant No. LQ19F040002), and the Scientific and Technical Plan Project of Shaoxing City (Grant No. 2017B70063). The authors also thank Instrumental Analysis and Research Center of Shanghai University for XRD and SEM measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haitao Xu, Run Xu or Fei Xu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Tian, Y., Wang, W. et al. In situ deposition of black α-FAPbI3 films by vacuum flash evaporation for solar cells. J Mater Sci: Mater Electron 30, 8381–8389 (2019). https://doi.org/10.1007/s10854-019-01155-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01155-w

Navigation