Skip to main content
Log in

Enhanced visible light-driven photocatalytic performance of Zr doped CeO2 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, pristine and Zr-doped CeO2 nanoparticles with chemical formula Ce1−xZrxO2 (x = 0, 0.05, 0.075 and 0.1) have been prepared through facile hydrothermal process. The influence of Zr doping on the microstructure, thermal, optical and photocatalytic properties of CeO2 was systematically explored through various analytical techniques. Analysis of the XRD data reveals cubic fluorite structure of the samples with average crystallite size of 12, 15, 21 and 30 nm respectively for different Zr doping. The optical properties of the nanoparticles were studied through UV–visible absorption and photoluminescence (PL) spectroscopy. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy measurements were performed to examine the chemical state and microstructure of the synthesized materials. The functional groups and mode of vibrations have been identified by the Fourier transform infrared (FTIR) spectroscopy. A reduction in the optical band gap of CeO2 (from 3.25 to 3.10 eV) is observed on systematic Zr doping. In addition, significant enhancement in the photocatalytic performance is also noticed for the doped samples (92.2%) as compared to the pristine one (68.7%) for the degradation of methylene blue (MB) dye under visible light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Dai, M.L. Bruening, Nano Lett. 2, 497–501 (2002)

    Article  Google Scholar 

  2. C.T. Campbell, C.H. Peden, Science 309, 713–714 (2005)

    Article  Google Scholar 

  3. A. Abbasi, D. Ghanbari, M. Salavati-Niasari, M. Hamadanian, J. Mater. Sci.: Mater. Electron. 27, 4800–4809 (2016)

    Google Scholar 

  4. M.G. Sujana, K.K. Chattopadyay, S. Anand, Appl. Surf. Sci. 254, 7405–7409 (2008)

    Article  Google Scholar 

  5. H. Safajou, H. Khojasteh, M. Salavati-Niasari, S. Mortazavi-Derazkola. J. Colloid Interface Sci. 498, 423–432 (2017)

    Article  Google Scholar 

  6. L. Wang, F. Meng, Mater. Res. Bull. 48, 3492–3498 (2013)

    Article  Google Scholar 

  7. S. Zinatloo-Ajabshir, M. Salavati-Niasari, M. Hamadanian. RSC Adv. 5, 33792 (2015)

    Article  Google Scholar 

  8. M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, A. Yeganeh Faal, S. Bagheri, Adv. Powder Technol. 27, 2066–2075 (2016)

    Article  Google Scholar 

  9. H. Yu, Y. Bai, X. Zong, F.Q. Tang, G.Q. Lu, L.H. Wang, Chem. Commun. 48, 7386–7388 (2012)

    Article  Google Scholar 

  10. P. Singh, N.Q. Minh, Int. J. Appl. Ceram. Technol. 1, 5–15 (2004)

    Article  Google Scholar 

  11. G. Cheng, J. Xiong, F.J. Stadler, Powder Technol. 249, 89 (2013)

    Article  Google Scholar 

  12. J. Zhou, L. Zhao, Q. Huang, R. Zhou, X. Li, Cat. Lett. 127, 277–284 (2009)

    Article  Google Scholar 

  13. J. Zhang, H. Kumagai, K. Yamamura, S. Ohara, S. Takami, et al. Nano Lett. 11, 361–364 (2011)

    Article  Google Scholar 

  14. R. Bakkiyaraj, G. Bharath, K. Hasini Ramsait, A. Abdel-Wahab, E.H. Alsharaeh, S.M. Chen, M. Balakrishnan, RSC Adv. 6, 51238–51245 (2016)

    Article  Google Scholar 

  15. V. Matolin, M. Cabala, I. Matolinova, M. Skoda, M. Vaclavu, K.C. Prince, T. Skala, T. Mori, H. Yoshikawa, Y. Yamashita, S. Ueda, K. Kobayashi, Fuel Cells 10, 139–144 (2010)

    Google Scholar 

  16. P. Jasinski, T. Suzuki, U.H. Anderson, Sens. Actuators B 95(1–3), 73–77 (2003)

    Article  Google Scholar 

  17. K.S. Brinkman, H. Takamura, H.L. Tuller, T. Iijima, J. Electrochem. Soc. 157, B1852–B1857 (2010)

    Article  Google Scholar 

  18. D. Wang, Y. Kang, V. Doan-Nguyen, J. Chen, R. Kungas, N.L. Wieder, K. Bakhmutsky, R.J. Gort, C.B. Murray, Angew. Chem. 50, 4378–4381 (2011)

    Article  Google Scholar 

  19. A. Corma, P. Atienzar, H. Garcia, J.Y. Chane-Ching, Nat. Mater. 3, 394–407 (2004)

    Article  Google Scholar 

  20. K.S. Hemalatha, K. Rukmani, RSC Adv. 6, 74354–74366 (2016)

    Article  Google Scholar 

  21. K.S. Ranjith, P. Saravanan, S. Chen, C. Dong, C.L. Chen, S. Chen, K. Asokan, R. Thangavelu, R. Kumar, J. Phys. Chem. C 118, 27039 (2014)

    Article  Google Scholar 

  22. Y. Liu, C. Wen, Y. Guo, G. Lu, Y. Wang, J. Phys. Chem. C 114, 9889–9897 (2010)

    Article  Google Scholar 

  23. C.E. Hori, H. Permana, K.Y. Simon Ng, A. Brenner, K. More, K.M. Rahmoeller, D. Belton, Appl. Catal. B Environ. 16, 105–117 (1998)

    Article  Google Scholar 

  24. M. Adamowska, S. Muller, P. Dacosta, A. Krzton, P. Burg, Appl. Catal. B Environ. 74, 278–289 (2007)

    Article  Google Scholar 

  25. G. Zhou, P.R. Shah, T. Kim, P. Fornasiero, R. Gorte, J. Catal. Today 123, 86–93 (2007)

    Article  Google Scholar 

  26. P. Fornasiero, R. Dimonte, G.R. Rao, J. Kaspar, S. Meriani, A. Trovarelli, M. Graziani, J. Catal. 151, 168–177 (1995)

    Article  Google Scholar 

  27. M. Boaro, C. de Leitenburg, G. Dolcetti, A. Trovarelli, J. Catal. 193, 338–347 (2000)

    Article  Google Scholar 

  28. P. Periyat, F. Laffir, S.A.M. Tofail, E. Magner, RSC Adv. 1, 1794–1798 (2011)

    Article  Google Scholar 

  29. P. Venkataswamy, K.N. Rao, D. Jampaiah, B.M. Reddy, Appl. Catal. B 162, 122–132 (2015)

    Article  Google Scholar 

  30. Z. Wang et al., Appl. Catal. B 138–139, 253–259 (2013)

    Article  Google Scholar 

  31. W.J. Stark, M. Maciejewski, L. Madler, S.E. Pratsinis, A. Baiker, J. Catal. 220, 35–43 (2003)

    Article  Google Scholar 

  32. M.A. Wahab, S.S. Physics, Narosa Publishing House, New Delhi, 2nd edn, 2010

  33. M.A. Majeed Khan, W. Khan, A. Kumar, A.N. Alhazaa, Mater. Lett. 219, 269–272 (2018)

    Article  Google Scholar 

  34. V.B. Kanattukara, K. Dong-Kyu, P. Dae-Won, Nanoscale 2, 1222–1228 (2010)

    Article  Google Scholar 

  35. S. Tsunekawa, K. Asami, S. Ito, M. Yashima, T. Sugimoto, Appl. Surf. Sci. 252, 1651–1656 (2005)

    Article  Google Scholar 

  36. J. Xin Liu, X. Ding, R. Lin, Z. Gao, W.-L. Li, Dai, Appl. Catal. A 503, 117–123 (2015)

    Article  Google Scholar 

  37. Y. Yu, L. Zhong, J. Ding, W. Cai, Q. Zhong, RSC Adv. 5, 23193–23201 (2015)

    Article  Google Scholar 

  38. D. Jampaiah, S.J. Ippolito, Y.M. Sabri, B.M. Reddy, S.K. Bhargava, Catal. Sci. Technol. 5, 2913–2924 (2015)

    Article  Google Scholar 

  39. D. Jampaiah, S.J. Ippolito, Y.M. Sabri, J. Tardio, P.R. Selvakannan, A. Nafady, B.M. Reddy, S.K. Bhargava, Catal. Sci. Technol. 6, 1792–1803 (2016)

    Article  Google Scholar 

  40. Y.-W. Zhang, R. Si, C.-S. Liao, C.-H. Yan, J. Phys. Chem. B 107, 10159–10167 (2003)

    Article  Google Scholar 

  41. M.A.M. Khan, W. Khan, M. Ahamed, A.N. Alhazaa, Sci. Rep. 7, 12560 (2017)

    Article  Google Scholar 

  42. R. Bakkiyaraj, M. Balakrishnan, G. Bharath, N. Ponpandian, J. Alloy. Compd. 724, 555–564 (2017)

    Article  Google Scholar 

  43. M. Ornatska, E. Sharpe, D. Andreescu, S. Andreescu, Anal. Chem. 83, 4273–4280 (2011)

    Article  Google Scholar 

  44. J. Lin, L. Li, Y. Huang, W. Zhang, X. Wang, A. Wang, T. Zhang, J. Phys. Chem. C 115, 16509 (2011)

    Article  Google Scholar 

  45. A. Martnez-Arias et al., J. Catal. 240, 1–7 (2006)

    Article  Google Scholar 

  46. H. Zhang et al., Environ. Sci. Technol. 45, 3725–3730 (2011)

    Article  Google Scholar 

  47. S. Kumar, M.A. Majeed Khan, J. Mater. Sci. Technol. 29(12), 1151–1155 (2013)

    Article  Google Scholar 

  48. M.A. Majeed Khan, M.W. Khan, M. Alhoshan, M.S. AlSalhi, A.S. Aldwayyan, M. Zulfequar, Mater. Lett. 64, 1929–1932 (2010)

    Article  Google Scholar 

  49. C. Hu, Z. Zhang, H. Liu, P. Gao, Z.L. Wang, Nanotechnology 17, 5983–5987 (2006)

    Article  Google Scholar 

  50. M.E. Khan, M.M. Khan, M.H. Cho, Sci. Rep. 7, 5928 (2017)

    Article  Google Scholar 

  51. I. Khan, S. Khan, R. Nongjai, H. Ahmed, W. Khan, Opt. Mater. 35, 1189–1193 (2013)

    Article  Google Scholar 

  52. M.A. Majeed Khan, S. Kumar, T. Ahamad, A.N. Alhazaa, J. Alloy. Compd. 743, 485–493 (2018)

    Article  Google Scholar 

  53. S. Kumar, A. Kumar, Mater. Sci. Eng. B 223, 98–108 (2017)

    Article  Google Scholar 

  54. S.K. Alla, E.V.P. Komarala, R.K. Mandal, N.K. Prasad, Mate. Chem. Phys. 182, 280–286 (2016)

    Article  Google Scholar 

  55. G. Wang, Q. Mu, T. Chen, Y. Wang, J. Alloys Compd. 493, 202–207 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through Group Project No. RGP-1437-023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Majeed Khan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majeed Khan, M.A., Khan, W., Naziruddin Khan, M. et al. Enhanced visible light-driven photocatalytic performance of Zr doped CeO2 nanoparticles. J Mater Sci: Mater Electron 30, 8291–8300 (2019). https://doi.org/10.1007/s10854-019-01147-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01147-w

Navigation