Probing the impact of surface reactivity on charge transport in dimensional phase changed tungsten films

Abstract

A clear understanding of the surface chemical reactivity of tungsten (W) films is indispensable for photocatalytic, sensing and memory applications, especially in the presence of WOx (0 ≤ x ≤ 3) for low thicknesses. Here, surface reactivity of the film through diffusion of oxygen and its ability to make bonds with W is identified by X-ray photoelectron spectroscopy (XPS). Further inspection of XPS valence band spectra confirms the possible hybridization of W 5d and O 2p electrons in the presence of defect states near Fermi level. Exploration of surface morphology by scanning electron microscopy (SEM) reveals agglomeration of grains with increasing film thickness. Detailed microstructural and grazing-incidence X-ray diffraction (GIXRD) studies suggest the formation of β W nanocrystallites in amorphous matrix, and establish a knowledge of thickness dependent phase transformation of W beside surface oxidation. The nonlinear surface current–voltage characteristics at low thickness further indicates dimensional phase change owing to the involvement of point defects. We also report a detailed study of interstitial and vacancy mediated diffusion probability of oxygen in W films, where the estimated diffusion constant is found to be relatively higher than that of other body-centered cubic transition metals.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    M.M. Peter, A. Gregory, K.E. Horrocks, S. Pelcher, Banerjee, Transformers: the changing phases of low-dimensional vanadium oxide bronzes. Chem. Commun. 51, 5181–5198 (2015)

    Article  Google Scholar 

  2. 2.

    Y. Fukaya, M. Hashimoto, A. Kawasuso, A. Ichimiya, Structure and phase transition of low-dimensional metals on Si (111) surfaces studied by reflection high-energy positron diffraction. J. Phys.: Conf. Ser. 225, 012008 (2010)

    Google Scholar 

  3. 3.

    W.M. Xiong, J. Shao, Y.Q. Zhang, Y. Chen, X.Y. Zhang, W.J. Chen, Y. Zheng, Morphology-controlled epitaxial vanadium dioxide low-dimensional structures: the delicate effects on the phase transition behaviors. Phys. Chem. Chem. Phys. 20, 14339–14347 (2018)

    Article  Google Scholar 

  4. 4.

    X. Wang, Z. Song, W. Wen, H. Liu, J. Wu, C. Dang, M. Hossain, M.A. Iqbal, L. Xie (2018) Potential 2D materials with phase transitions: structure, synthesis, and device applications advanced materials. Adv. Mater. https://doi.org/10.1002/adma.201804682

    Google Scholar 

  5. 5.

    A.S. Foster, A.L. Shluger, R.M. Nieminen, Mechanism of interstitial oxygen diffusion in hafnia. Phys. Rev. Lett. 89, 225901 (2002)

    Article  Google Scholar 

  6. 6.

    X. Wang, M. Posselt, J. Faßbender, Influence of substitutional atoms on the diffusion of oxygen in dilute iron alloys. Phys. Rev. B 98, 064103 (2018)

    Article  Google Scholar 

  7. 7.

    C.F. Dickens, J.H. Montoya, A.R. Kulkarni, M. Bajdich, J. K. Nørskov, An electronic structure descriptor for oxygen reactivity at metal and metal-oxide surfaces. Surf. Sci. 681, 122–129 (2019)

    Article  Google Scholar 

  8. 8.

    H. Zhao, F. Pan, Y. Li, A review on the effects of TiO2 surface point defects on CO2 photoreduction with H2O. J. Materiomics 3, 17–32 (2017)

    Article  Google Scholar 

  9. 9.

    B.W. Lee, T.S. Kim, S.K. Goswami, E. Oh, Gas sensitivity and point defects in sonochemically grown ZnO nanowires. J. Korean Phys. Soc. 60(3), 415–419 (2012)

    Article  Google Scholar 

  10. 10.

    A. Padovani, L. Larcher, O. Pirrotta, L. Vandelli, G. Bersuker, Microscopic modeling of HfOx RRAM operations: from forming to switching. IEEE Trans. Elect. Dev. 62(6), 1998–2006 (2015)

    Article  Google Scholar 

  11. 11.

    J. Xu, Y. Teng, F. Teng, Effect of surface defect states on valence band and charge separation and transfer efficiency. Sci. Rep. 6, 32457 (2016)

    Article  Google Scholar 

  12. 12.

    C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10, 2088–2106 (2010)

    Article  Google Scholar 

  13. 13.

    J.G. Yu, W.J. Han, Z.C. Sun, K.G. Zhu, Morphology and microstructure of tungsten films by magnetron sputtering. Mater. Sci. Forum 913, 416–423 (2018)

    Article  Google Scholar 

  14. 14.

    Y.G. Shen, Y.W. Mai, Q.C. Zhang, D.R. McKenzie, W.D. McFall, W.E. McBride, Residual stress, microstructure, and structure of tungsten thin films deposited by magnetron sputtering. J. Appl. Phys. 87, 177–187 (2000)

    Article  Google Scholar 

  15. 15.

    H.L. Sun, Z.X. Song, D.G. Guo, F. Ma, K.W. Xu, Microstructure and mechanical properties of nanocrystalline tungsten thin films. J. Mater. Sci. Technol. 26, 87–92 (2010)

    Article  Google Scholar 

  16. 16.

    T.J. Vink, W. Walrave, J.L.C. Daams, A.G. Dirks, M.A.J. Somers, K. Van den Aker, Stress, strain, and microstructure in thin tungsten films deposited by dc magnetron sputtering. J. Appl. Phys. 74, 988–995 (1993)

    Article  Google Scholar 

  17. 17.

    M.S. Aouadi, R.R. Parsons, P.C. Wong, K.A.R. Mitchell, Characterization of sputter deposited tungsten films for X-ray multilayers. J. Vac. Sci. Technol. A 10, 273–280 (1992)

    Article  Google Scholar 

  18. 18.

    I.A. Weerasekera, S.I. Shah, D.V. Baxter, K.M. Unruh, Structure and stability of sputter deposited beta-tungsten thin films. Appl. Phys. Lett. 64, 3231–3233 (1994)

    Article  Google Scholar 

  19. 19.

    K. Heinola, T. Ahlgren, Diffusion of hydrogen in bcc tungsten studied with first principle calculations. J. Appl. Phys. 107, 113531 (2010)

    Article  Google Scholar 

  20. 20.

    M.E. Eberhart, M.M. Donovan, R.A. Outlaw, Ab initio calculations of oxygen diffusivity in group-IB transition metals. Phys. Rev. B 46, 12744 (1992)

    Article  Google Scholar 

  21. 21.

    O. Keefe, M.J. Grant, Phase transformation of sputter deposited tungsten thin films with A-15 structure. J. Appl. Phys. 79, 9134–9141 (1996)

    Article  Google Scholar 

  22. 22.

    N. Radić, A. Tonejc, J. Ivkov, P. Dubček, S. Bernstorff, Z. Medunić, Sputter-deposited amorphous-like tungsten. Surf. Coatings Technol. 180, 66–70 (2004)

    Article  Google Scholar 

  23. 23.

    A.B. Kiss, Thermoanalytical Study of the Composition of β-tungsten. J. Therm. Anal. Cal. 54, 815–824 (1998)

    Article  Google Scholar 

  24. 24.

    R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, A.C. Bose, X-ray peak broadening analysis in ZnO nanoparticles. Sol. State Commun. 149, 1919–1923 (2009)

    Article  Google Scholar 

  25. 25.

    J. Chastain (ed.) Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corp, Physical Electronics Division, Minnesota, 1992)

  26. 26.

    L. Salvati Jr., L.E. Makovsky, J.M. Stencel, F.R. Brown, D.M. Hercules, Surface spectroscopic study of tungsten-alumina catalysts using X-ray photoelectron, ion scattering, and Raman spectroscopies. J. Phys. Chem. 85, 3700–3707 (1981)

    Article  Google Scholar 

  27. 27.

    D. Mueller, A. Shih, E. Roman, T. Madey, R. Kurtz, R. Stockbauer, A synchrotron radiation study of BaO films on W (001) and their interaction with H2O, CO2, and O2. J. Vac. Sci. Technol. A 6, 1067–1071 (1988)

    Article  Google Scholar 

  28. 28.

    M.C. Biesinger, L.W. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 257, 887–898 (2010)

    Article  Google Scholar 

  29. 29.

    D.D. Sarma, C.N.R.J. Rao, Electron Spectrosc. Relat. Phenom. 20, 25 (1980)

    Article  Google Scholar 

  30. 30.

    F.P.J.M. Kerkhof, J.A. Moulijn, A. Heeres, The XPS spectra of the metathesis catalyst tungsten oxide on silica gel. J. Electron Spectrosc. Relat. Phenom. 14, 453–466 (1978)

    Article  Google Scholar 

  31. 31.

    A.P. Shpak, A.M. Korduban, M.M. Medvedskij, V.O. Kandyba, XPS studies of active elements surface of gas sensors based on WO3–x nanoparticles. J. Electron Spectrosc. Relat. Phenom. 156, 172–175 (2007)

    Article  Google Scholar 

  32. 32.

    O. Bouvard, A. Krammer, A. Schueler, In situ core-level and valence-band photoelectron spectroscopy of reactively sputtered tungsten oxide films. Surf. Interf. Anal. 48, 660–663 (2016)

    Article  Google Scholar 

  33. 33.

    A. Kanjilal, S. Gemming, L. Rebohle, A. Muecklich, T. Gemming, M. Voelskow, W. Skorupa, M. Helm, Phys. Rev. B 83, 113302 (2011)

    Article  Google Scholar 

  34. 34.

    M. Ohring, Materials Science of Thin Film Deposition and Structure, 2nd ed. (Elsevier, Hoboken, 1900)

    Google Scholar 

  35. 35.

    M.A. Angadi, L.A. Udachan, The effect of substrate temperature on the electrical properties of thin chromium films. J. Mater. Sci. 16, 1412–1415 (1981)

    Article  Google Scholar 

  36. 36.

    J.A. Thornton, Substrate heating in cylindrical magnetron sputtering sources. Thin Solid Films 54, 23–31 (1978)

    Article  Google Scholar 

  37. 37.

    M. Tringides, R. Gomer, A Monte Carlo study of oxygen diffusion on the (110) plane of tungsten. Surf. Sci. 145, 121–144 (1984)

    Article  Google Scholar 

  38. 38.

    A. Alkauskas, M.D. McCluskey, C.G. Van de Walle, tutorial: defects in semiconductors—combining experiment and theory. J. Appl. Phys. 119, 181101 (2016)

    Article  Google Scholar 

  39. 39.

    S. Fujita, J. Neugebauer, General theory of interstitial diffusion in crystals. J. Phys. Chem. Solids 49, 561–571 (1988)

    Article  Google Scholar 

  40. 40.

    A.J. Jacobs, Diffusion of oxygen in tungsten and some other transition metals. Nature 200, 1310 (1963)

    Article  Google Scholar 

  41. 41.

    B. Chikh-Bled, B. Benyoucef, M. Aillerie, Experimental measurement of electric conductivity and activation energy in congruent lithium niobate crystal. J. Act. Pass. Electron. Dev. 7, 261–270 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support received from Shiv Nadar University and Department of Science and Technology, India under the project number of DST/EMR/2014/000971. Authors would also like to thank Dr. Ashish Kumar from IUAC, New Delhi for his kind help in electrical measurements. AC would like to acknowledge the help received from Mr. Joshua Asirvatham and Mr. Dip Das from Shiv Nadar University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aloke Kanjilal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chattaraj, A., Khan, S., Walczak, L. et al. Probing the impact of surface reactivity on charge transport in dimensional phase changed tungsten films. J Mater Sci: Mater Electron 30, 8278–8285 (2019). https://doi.org/10.1007/s10854-019-01145-y

Download citation