Degradation in fundamental characteristic features of Bi-2212 superconducting ceramic material with Sr/Ti partial substitution

  • A. T. UlgenEmail author
  • G. Yildirim


The present work investigates the vital differentiations in some basic characteristic properties including the crystallinity quality, flux pinning mechanism, superconducting, dc electrical features, grain boundary coupling problems and strength of connection between the superconducting grains in the poly-crystallized Bi2.1Sr2.0−xTixCa1.1Cu2.0Oy cuprate ceramic materials with the partial aliovalent substitution of Sr2+ impurities for the Ti4+ foreign additives in the crystal system. All the materials are prepared by the standard solid-state reaction method, and the characterization of samples produced is thoroughly performed by the typical experimental measurements such as dc electrical resistivity over the temperature, critical current density and powder X-ray diffraction investigations. It is obvious that all characteristic properties tend to diminish constantly with the augmentation of the aliovalent Sr/Ti partial replacement level, and in case of x = 0.10 they reach the global minimum values. To illustrate, the low Bi-2212 superconducting phase diverges from the stabilization because of new induced permanent crystal structure (crystallinity) problems such as the voids, porosity, defects, texturing, cracks, grain boundary coupling problems, grain alignment distributions, stress raisers, omnipresent flaws and crack initiation sites in the crystal system. Besides, the presence of Ti impurities leads to the formation of new impurity phases related to very low superconducting and characteristic TiO2 phase, being favored by either the decrement of c lattice cell parameter or increment of a-axis length. The similar findings are observed in the temperature dependent electrical resistivity measurements. Namely, the electrical resistivities at the normal state are found to increase dramatically from about 74.75–180.47 mΩcm whereas the offset and onset critical temperature values are recorded to diminish from 82.11 K (for the pure sample) to 50.52 K (for the sample prepared with x = 0.10 substitution level) and 84.03–75.14 K, respectively, with the enhancement in the substitution level. Likewise, the Sr/Ti partial replacement affects negatively not only the thermal fluxon motions of correlated two-dimensional pancake vortices but also the ability and strength of vortex lattice period, elasticity, effective and active energy barriers for the flux pinning centers in the Bi-2212 superconducting crystal lattice. In this respect, the Sr/Ti partial substitution mechanism is ploughed to improve the fundamental characteristic features.



  1. 1.
    H.K. Onnes, Further experiments with liquid helium. D. On the change of electrical resistance of pure metals at very low temperatures, etc. V. The Disappearance of the resistance of mercury, Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings, 14 (1911) 113–115Google Scholar
  2. 2.
    S. Nagaya, N. Hirano, M. Naruse, T. Watanabe, T. Tamada, Development of a high-efficiency conduction cooling technology for SMES coils. IEEE T. Appl. Supercond. 23, 5602804–5602807 (2013)CrossRefGoogle Scholar
  3. 3.
    H.H. Xu, L. Cheng, S.B. Yan, D.J. Yu, L.S. Guo, X. Yao, Recycling failed bulk YBCO superconductors using the NdBCO/YBCO/MgO film-seeded top-seeded melt growth method. J. Appl. Phys. 111, 103910 (2012)CrossRefGoogle Scholar
  4. 4.
    T.A. Coombs, A finite element model of magnetization of superconducting bulks using a solid-state flux pump. IEEE Trans. Appl. Supercond. 21, 3581–3586 (2011)CrossRefGoogle Scholar
  5. 5.
    K.Y. Choi, I.S. Jo, S.C. Han, Y.H. Han, T.H. Sung, M.H. Jung, G.S. Park, S.I. Lee, High and uniform critical current density for large-size YBa2Cu3O7-y single crystals. Curr. Appl. Phys. 11, 1020–1023 (2011)CrossRefGoogle Scholar
  6. 6.
    A.T. Ulgen, T. Turgay, C. Terzioglu, G. Yildirim, M. Oz, Role of Bi/Tm substitution in Bi-2212 system on crystal structure, quality, pair wave function and polaronic states. J. Alloy. Compd. 764, 755–766 (2018)CrossRefGoogle Scholar
  7. 7.
    J.D. Hodge, H. Muller, D.S. Applegate, Q. Huang, A resistive fault current limiter based on high temperature superconductors. Appl. Supercond. 3, 469–482 (1995)CrossRefGoogle Scholar
  8. 8.
    S.Y. Oh, H.R. Kim, Y.H. Jeong, O.B. Hyun, C.J. Kim, Joining of Bi-2212 high-T-c superconductors and metals using indium solders, Physica C 463, 464–467 (2007)CrossRefGoogle Scholar
  9. 9.
    M. Chen, W. Paul, M. Lakner, L. Donzel, M. Hoidis, P. Unternaehrer, R. Weder, M. Mendik, 6.4 MVA resitive fault current limiter based on Bi-2212 superconductor. Physica C 372, 1657–1663 (2002)CrossRefGoogle Scholar
  10. 10.
    H. Maeda, Y. Tanaka, M. Fukutomi, T. Asano, Jpn. J. Appl. Phys. 27, L209–L210 (1988)CrossRefGoogle Scholar
  11. 11.
    S.E. Mousavi Ghahfarokhi, M. Zargar Shoushtari, Phys. B 405, 4643–4649 (2010)CrossRefGoogle Scholar
  12. 12.
    Y. Zalaoglu, G. Yildirim, C. Terzioglu, J. Mater. Sci: Mater. El. 24, 239–247 (2013)Google Scholar
  13. 13.
    A. Biju, R.P. Aloysius, U. Syamaprasad, Supercond. Sci. Technol. 18, 1454–1459 (2005)CrossRefGoogle Scholar
  14. 14.
    Y. Zalaoglu, B. Akkurt, M. Oz, G. Yildirim, Transgranular region preference of crack propagation along Bi-2212 crystal structure due to Au nanoparticle diffusion and modeling of new systems. J. Mater. Sci: Mater. El. 28, 12839–12850 (2017)Google Scholar
  15. 15.
    C. Autret-Lambert, B. Pignon, M. Gervais, I. Monot-Laffez, A. Ruyter, L. Ammor, F. Gervais, J.M. Bassat, R. Decourt, Microstructural and transport properties in substituted Bi2Sr2CaCu2O8 + delta modulated compounds. J. Solid State Chem. 179, 1698–1706 (2006)CrossRefGoogle Scholar
  16. 16.
    H. Miao, M. Meinesz, B. Czabai, J. Parrell, S. Hong, Microstructure and Jc improvements in multifilamentary Bi-2212/Ag wires for high field magnet applications, AIP Conference Proceedings 986 (2008) 423–430Google Scholar
  17. 17.
    G. Yildirim, Beginning point of metal to insulator transition for Bi-2223 superconducting matrix doped with Eu nanoparticles. J. Alloy. Compd. 578, 526–535 (2013)CrossRefGoogle Scholar
  18. 18.
    K. Koyama, S. Kanno, S. Noguchi, Electrical, magnetic and superconducting properties of the quenched Bi2Sr2Ca1–XNdXCu2O8+y system. Jpn. J. Appl. Phys. 29, L53–L56 (1990)CrossRefGoogle Scholar
  19. 19.
    B.F. Azzouz, A. M’chirgui, B. Yangui, C. Boulesteix, B.M. Salem, Synthesis, microstructural evolution and the role of substantial addition of PbO during the final processing of (Bi,Pb)-2223 superconductors. Physica C 356, 83–96 (2001)CrossRefGoogle Scholar
  20. 20.
    V. Mihalache, I.G. Deac, A.V. Pop, L. Miu, The pinning force density in polycrystalline Bi1.8Pb0.4Sr2Ca2–xYxCu3Oy multiphase systems. Curr. Appl. Phys. 11, 1010–1014 (2011)CrossRefGoogle Scholar
  21. 21.
    D. Marconi, G. Stiufiuc, A.V. Pop, Effect of partial substitution of Ca by 4f elements on dissipative processes in Bi:2223 superconductors. J. Phys. 153, 012022 (2009)Google Scholar
  22. 22.
    S. Vinu, P.M. Sarun, A. Biju, R. Shabna, P. Guruswamy, U. Syamaprasad, The effect of substitution of Eu on the critical current density and flux pinning properties of (Bi, Pb)-2212 superconductor. Supercond. Sci. Technol. 21, 045001–045005 (2008)CrossRefGoogle Scholar
  23. 23.
    R. Shabna, P.M. Sarun, S. Vinu, A. Biju, U. Syamaprasad, Doping controlled metal to insulator transition in the (Bi, Pb)-2212 system. Supercond. Sci. Technol. 22, 045016–045022 (2009)CrossRefGoogle Scholar
  24. 24.
    P.M. Sarun, S. Vinu, R. Shabna, A. Biju, U. Syamaprasad, Microstructural and superconducting properties of Yb-substituted (Bi, Pb)-2212 superconductor sintered at different temperatures. J. Alloy. Compd. 472, 13–17 (2009)CrossRefGoogle Scholar
  25. 25.
    A. Biju, P.M. Sarun, R.P. Aloysius, U. Syamaprasad, Flux pinning properties of Yb substituted (Bi,Pb)-2212 superconductor. J. Alloy. Compd. 454, 46–51 (2008)CrossRefGoogle Scholar
  26. 26.
    R.J. Sanderson, K.C. Hewitt, Stoichiometry control of magnetron sputtered Bi2Sr2Ca1–xYxCu2Oy (0≤x≤0.5) thin film, composition spread libraries: substrate bias and gas density factors. Physica C 425, 52–61 (2005)CrossRefGoogle Scholar
  27. 27.
    C. Nguyen-Van-Huong, C. Hinnen, J.M. Siffre, Superconductivity and X-ray photoelectron spectroscopy studies of Bi2Sr2–xLaxCaCu2O8 + δ. J. Mater. Sci. 32, 1725–1731 (1997)CrossRefGoogle Scholar
  28. 28.
    B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 3rd ed., Pearson, printed in USA, 2014Google Scholar
  29. 29.
    W. Gao, J.B. Vander-sande, Textured BSSCO/Ag superconducting microcomposites with improved critical current-density through mechanical deformation. Supercond. Sci. Technol. 5, 318–326 (1992)CrossRefGoogle Scholar
  30. 30.
    F.K. Lotgering, Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures–I. J. Inorg. Nucl. Chem. 9, 113–123 (1959)CrossRefGoogle Scholar
  31. 31.
    N.T. Mua, A. Sundaresan, N.K. Man, D.D. Dung, Influence of preparation conditions on superconducting properties of Bi-2223 thin films bull. Mater. Sci. 37, 19–25 (2014)Google Scholar
  32. 32.
    M. Tinkham, Introduction to Superconductivity, 2nd edn. (McGraw-Hill, New York, 1996)Google Scholar
  33. 33.
    J.B. Ketterson, S.N. Song, Superconductivity, 1st edn. (Cambridge University Press, Cambridge, 1999)CrossRefGoogle Scholar
  34. 34.
    B. Akkurt, G. Yildirim, Change of mechanical performance and characterization with replacement of Ca by Gd nanoparticles in Bi-2212 system and suppression of durable tetragonal phase by Gd. J. Mater. Sci: Mater. El. 27, 13034–13043 (2016)Google Scholar
  35. 35.
    P.B. Allen, W.E. Pickett, H. Krakauer, Anisotropic normal-state transport-properties predicted and analyzed for high-Tc oxide superconductors. Phy. Rev. B 37, 7482–7490 (1988)CrossRefGoogle Scholar
  36. 36.
    P.W. Anderson, Hall effect in the two-dimensional Luttinger liquid, Phys. Rev. Lett. 67, 2092 (1991)CrossRefGoogle Scholar
  37. 37.
    S. Martin, M. Gurvitch, C.E. Rice, A.F. Hebard, P.L. Gammel, R.M. Fleming, A.T. Fiory, Nonlinear temperature-dependence of the normal-state resistivity in YBa2Cu4O films. Phys. Rev. B 39, 9611–9613 (1989)CrossRefGoogle Scholar
  38. 38.
    R. Shabna, P.M. Sarun, S. Vinu, U. Syamaprasad, Charge carrier localization and metal to insulator transition in cerium substituted (Bi,Pb)-2212 superconductor. J. Alloy. Compd. 493, 11–16 (2010)CrossRefGoogle Scholar
  39. 39.
    D.M. Newns, P.C. Pattnaik, C.C. Tsuei, Role of vanhove singularity in high-temperature superconductors—mean field. Phys. Rev. B 43, 3075–3084 (1991)CrossRefGoogle Scholar
  40. 40.
    M. Li, Y. Zhang, Y. Li, Y. Qi, Granular superconductivity in polycrystalline Bi2Sr2CaCu2O8 + γ by homovalent La substitution on Bi sites. J. Non-Cryst. Solids 356, 2831–2835 (2010)CrossRefGoogle Scholar
  41. 41.
    J. Ekin, Experimental techniques for low-temperature measurements: cryostat design, material properties and superconductor critical-current testing (Oxford University Press, New York, 2006)CrossRefGoogle Scholar
  42. 42.
    X. Xu, J.H. Kim, S.X. Dou, S. Choi, J.H. Lee, H.W. Park, M. Rindfleish, M. Tomsic, A correlation between transport current density and grain connectivity in MgB2/Fe wire made from ball-milled boron. J. Appl. Phys. 105, 103913 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electric-Electronic EngineeringSirnak UniversitySirnakTurkey
  2. 2.Department of Mechanical EngineeringAbant Izzet Baysal UniversityBoluTurkey

Personalised recommendations