Skip to main content

Influence of Tin doping on the Sm123 superconducting ceramics

Abstract

We produced the samples that consist of the nominal composition as Sm1.46Ba1.54−xSnxCu3.2Oy (x = 0.35; 0.55; 0.75 and 0.95) by the melt growth method. We investigated Sn-dopant effects regarding differential scanning calorimetry, scanning electron microscope, X-ray powder diffraction and levitation force. The X-ray powder diffraction diagrams show many Sm211 phases in the Sn-doped samples. The lattice structures belong to the orthorhombic and tetragonal unit cells for the Sn-free and Sn-doped samples, respectively. We achieved the reduction of the grain size and the percentage of the orthorhombic phase with Sn doping. The SEM images of Sn-doped samples reveal to the reduction of the grain size. The reason of phase transformation is suspected to be related to the evolution of the c-lattice parameter. It is well-known that oxygen content also causes the phase transformation of the RE123. The a, b, and c-lattice parameters correspond to the unit cell closely matched to the well-known Sm123 values in the literature. The orthorhombic (123) phase in the matrix increases later, even if it makes smaller initially in terms of grain size. In this study, the reduction of the grain size confirms the increasing of tetragonal (211) phase in the matrix. This indicates that the (211) phase has been filtered in the matrix. Namely, the Sn-dopant effect induces the increase of Sm211 phase, in this way the phase transformation occurs in the matrix.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. N. Balchev, E. Nazarova, K. Buchkov, K. Nenkov, J. Pirov, B. Kunev, J. Supercond. Nov. Magn. 27, 763 (2014)

    Article  Google Scholar 

  2. N. Balchev, K. Nenkov, G. Mihova, B. Kunev, J. Pirov, Physica C 467, 174 (2007)

    Article  Google Scholar 

  3. N.A. Khan, N. Hassan, M. Irfan, T. Firdous, Phys. B 405, 1541 (2010)

    Article  Google Scholar 

  4. H. Koralay, S. Cavdar, A. Arslan, O. Ozturk, A.T. Tasci, N. Tugluoglu, Cryogenics 88, 17 (2017)

    Article  Google Scholar 

  5. A. Dvurečenskij, A. Cigáň, I. van Driessche, M. Škrátek, M. Majerová, E. Bruneel, J. Maňka, Acta Phys. Pol. A 131, 1045 (2017)

    Article  Google Scholar 

  6. S. Nariki, N. Sakai, M. Murakami, I. Hirabayashi, Physica C 412–414, 557 (2004)

    Article  Google Scholar 

  7. S.-J. Kim, H.-G. Kim, Physica C 338, 110 (2000)

    Article  Google Scholar 

  8. J.W. Cochrane, P.A. Miles, G.J. Russell, G. Foran, D.J. Cookson, Physica C 277, 213 (1997)

    Article  Google Scholar 

  9. T. Meignan, A. Banerjee, J. Fultz, P.J. McGinn, Physica C 281, 109 (1997)

    Article  Google Scholar 

  10. M.P. Delamare, I. Monot, J. Wang, J. Provost, G. Desgardin, Supercond. Sci. Technol. 9, 534 (1996)

    Article  Google Scholar 

  11. C.J. Kim, H.W. Park, K.B. Kim, G.W. Hong, Supercond. Sci. Technol. 8, 652 (1995)

    Article  Google Scholar 

  12. T. Saitoh, K. Kamata, K. Segawa, N. Sakai, S.I. Yoo, M. Murakami, Presented at International Symposium on Superconductivity VII, Kitakyushu, Japan (1994)

  13. M. Yoshida, N. Ogawa, I. Hirabayashi, S. Tanaka, Physica C 2400, 185 (1991)

    Google Scholar 

  14. N. Ogawa, H. Yoshida, in Advanced Superconductivity IV, Proceeding of the International Symposium Superconductivity, ed. by H. Hayakawa, N. Koshizuka (ISTEC, Tokyo, Japan, 1991) p. 455

  15. P. Diko, M. Sefcikova, K. Zmorayova, V. Antal, Int. J. Mater. Prod. Technol. 40(3–4) (2011)

  16. J. Shinoyama, J. Kase, S. Kondoh, E. Yanagisawa, T. Tasubara, M. Suzuki, T. Morimoto, Jpn. J. Appl. Phys. 29, 1999 (1990)

    Article  Google Scholar 

  17. M.Y. Song, D.H. Lim, D.Y. Won, G.W. Hong, H.G. Lee, Supercond. Sci. Tech. 8, 20 (1995)

    Article  Google Scholar 

  18. N.V.N. Viswanath, T. Rajasekharan, Physica C 298, 173 (1998)

    Article  Google Scholar 

  19. F. Licci, P. Tissot, H.J. Scheel, J. Less Common Met. 150, 201 (1989)

    Article  Google Scholar 

  20. I. Karaca, S. Celebi, A. Varilci, A.I. Malik, Supercond. Sci. Technol. 16, 100 (2003)

    Article  Google Scholar 

  21. A.K.M. Alamgir, H. Yamada, N. Harada, K. Osaki, N. Tada, IEEE Trans. Appl. Supercond. 9, 1864 (1999)

    Article  Google Scholar 

  22. P. Diko, G. Krabbes, Supercond. Sci. Technol. 16, 90 (2003)

    Article  Google Scholar 

  23. P.K. Nayak, S. Ravi, J. Am. Ceram. Soc. 90, 2819 (2007)

    Article  Google Scholar 

  24. V. Vinila, R. Jacob, A. Mony, H. Nair, S. Issac, S. Rajan, A. Nair, J. Isac, Cryst. Struct. Theory Appl. 3, 1 (2014)

    Google Scholar 

  25. J. Unsworth, J. Du, B.J. Crosby, J.C. Macfarlane, IEEE Trans. Mag. 29, 1 (1993)

    Article  Google Scholar 

  26. D.H. Kang, H. Weh, IEEE Trans. Energy Convers. 19, 477 (2004)

    Article  Google Scholar 

  27. D. Tripathi, T.K. Dey, Physica C 507, 1 (2014)

    Article  Google Scholar 

  28. I. Karaca, Chin. J. Phys. 5, 690 (2009)

    Google Scholar 

  29. F.C. Moon, Superconducting Levitation: Applications to Bearing and Magnetic Transportation (Wiley, New York, 2008)

    Google Scholar 

  30. W. Zhao, Y. Shi, M. Radušovská, A.R. Dennis, J.H. Durrell, P. Diko, D.A. Cardwell, Supercond. Sci. Technol. 29, 125002 (2016)

    Article  Google Scholar 

  31. K. Iida, N. Hari Babu, Y. Shi, D.A. Cardwell, Supercond. Sci. Technol. 18, 1421 (2005)

    Article  Google Scholar 

  32. C.J. Kim, S.D. Park, H.W. Park, B.H. Jun, Supercond. Sci. Technol. 29, 1 (2016)

    Google Scholar 

  33. J.J. Wang, C.Y. He, L.F. Meng, C. Li, R.S. Han, Z.X. Gao, Supercond. Sci. Technol. 16 (2003)

  34. E. Perini, G. Giunchi, M. Geri, A. Morandi, IEEE Trans. Appl. Supercond. 19 3 (2009)

  35. S. Basaran, S. Sivrioglu, Indian J. Pure Appl. Phys. 55, 261 (2017)

    Google Scholar 

  36. I. Karaca, in Superconductors—Properties, Technology, and Applications, ed. by Y. Grigorashvili (IntechOpen, 2012) p. 307, https://doi.org/10.5772/38131

  37. D.A. Cardwell, Mater. Sci. Eng. B53, 1 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İbrahim Karaca.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karaca, İ., Ünlüer, Ş. Influence of Tin doping on the Sm123 superconducting ceramics. J Mater Sci: Mater Electron 30, 7992–8006 (2019). https://doi.org/10.1007/s10854-019-01120-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01120-7