Giant electrical energy storage density in the P(VDF-TrFE)–graphene oxide composite papers with quasi-two-dimensional ferroelectricity

  • S. Ullah
  • Z. Han
  • Guangping ZhengEmail author


The nanocomposites consisting of graphene oxide (GO) and ferroelectric copolymer poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] have been successfully synthesized by a co-evaporation method. The structural, dielectric and ferroelectric properties of the composite papers are investigated. The Raman spectroscopy analyses on the nanocomposites GO/P(VDF-TrFE) reveal that the defects in GOs are reduced significantly by the loading of ferroelectric P(VDF-TrFE). The IG/ID ratio increases from 1.02 (for pure GO) to 1.17 [for GO/P(VDF-TrFE)-10%], revealing that the defects are reduced by the introduction of the nano-fillers due to a strong interaction between GO and P(VDF-TrFE) in the nanocomposites. The permittivity of the nanocomposites is enhanced by almost 3-times as compared to that of the pristine GOs. The nanocomposites show a notably raised polarization with high applied electric field. Furthermore, due to the high dielectric constants, the electrical energy storage density of the nanocomposites is as high as ~ 39.89 J cm−3 at 2.8 MV cm−1. The large energy density and high dielectric break down strength suggest that GO/P(VDF-TrFE) could be the promising novel materials for electrical energy storage.



This work was supported by a grant from the Postdoctoral Fellowship Scheme of Hong Kong Polytechnic University (Grant No. #1-YW3F).

Supplementary material

10854_2019_1089_MOESM1_ESM.docx (400 kb)
Supplementary material 1 (DOCX 400 KB)


  1. 1.
    M.S. Whittingham, MRS Bull. 33, 411 (2008)CrossRefGoogle Scholar
  2. 2.
    P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, H.J. Ploehn, H.C. Zur Loye, Materials 2, 1697 (2009)CrossRefGoogle Scholar
  3. 3.
    Q. Wang, L. Zhu, J. Polym. Sci. B 49, 1421 (2011)CrossRefGoogle Scholar
  4. 4.
    B.J. Landi, M.J. Ganter, C.D. Cress, R.A. DiLeo, R.P. Raffaelle, Energy Environ. Sci. 2, 638 (2009)CrossRefGoogle Scholar
  5. 5.
    A.S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nat. Mater. 4, 366 (2005)CrossRefGoogle Scholar
  6. 6.
    Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, G.H. Hu, Prog. Mater Sci. 57, 660 (2012)CrossRefGoogle Scholar
  7. 7.
    J. Ihlefeld, B. Laughlin, A. Hunt-Lowery, W. Borland, A. Kingon, J.P. Maria, J. Electroceram. 14, 95 (2005)CrossRefGoogle Scholar
  8. 8.
    S.-H. Yao, J.-K. Yuan, P. Gonon, J. Bai, S. Pairis, A. Sylvestre, J. Appl. Phys. 111, 104109 (2012)CrossRefGoogle Scholar
  9. 9.
    J. Wu, C.W. Nan, Y. Lin, Y. Deng, Phys. Rev. Lett. 89, 1 (2002)Google Scholar
  10. 10.
    J.Y. Li, L. Zhang, S. Ducharme, Appl. Phys. Lett. 90, 13 (2007)Google Scholar
  11. 11.
    B. Luo, X. Wang, E. Tian, H. Song, H. Wang, L. Li, ACS Appl. Mater. Interfaces 9, 19963 (2017)CrossRefGoogle Scholar
  12. 12.
    T. Wang, L. Jin, C. Li, Q. Hu, X. Wei, J. Am. Ceram. Soc. 98, 559 (2014)CrossRefGoogle Scholar
  13. 13.
    Q. Zhang, L. Wang, J. Luo, Q. Tang, J. Du, J. Am. Ceram. Soc. 92, 1871 (2009)CrossRefGoogle Scholar
  14. 14.
    I.V. Ciuchi, L. Mitoseriu, C. Galassi, J. Am. Ceram. Soc. 99, 2382 (2016)CrossRefGoogle Scholar
  15. 15.
    F. Gao, X. Dong, C. Mao, W. Liu, H. Zhang, L. Yang, F. Cao, G. Wang, J. Am. Ceram. Soc. 94, 4382 (2011)CrossRefGoogle Scholar
  16. 16.
    R. Han, J. Jin, P. Khanchaitit, J. Wang, Q. Wang, Polymer 53, 1277 (2012)CrossRefGoogle Scholar
  17. 17.
    S. Kaur, A. Kumar, A.L. Sharma, D.P. Singh, J. Mater. Sci.: Mater. Electron. 28, 8391 (2017)Google Scholar
  18. 18.
    G. Picci, M. Rabuffi, Pulsed Power Plasma Sci. 2001(1), 417 (2002)Google Scholar
  19. 19.
    C.G. Hardy, M.S. Islam, D. Gonzalez-Delozier, J.E. Morgan, B. Cash, B.C. Benicewicz, H.J. Ploehn, C. Tang, Chem. Mater. 25, 799 (2013)CrossRefGoogle Scholar
  20. 20.
    P. Kim, S.C. Jones, P.J. Hotchkiss, J.N. Haddock, B. Kippelen, S.R. Marder, J.W. Perry, Adv. Mater. 19, 1001 (2007)CrossRefGoogle Scholar
  21. 21.
    X. Zhang, Y. Shen, Q. Zhang, L. Gu, Y. Hu, J. Du, Y. Lin, C.-W. Nan, Adv. Mater. 27, 819 (2015)CrossRefGoogle Scholar
  22. 22.
    X. Zhang, Y. Shen, B. Xu, Q. Zhang, L. Gu, J. Jiang, J. Ma, Y. Lin, C.W. Nan, Adv. Mater. 28, 2055 (2016)CrossRefGoogle Scholar
  23. 23.
    W.S. Hummers Jr., R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  24. 24.
    J.-H. Lee, K.Y. Lee, B. Kumar, N.T. Tien, N.-E. Lee, S.-W. Kim, Energy Environ. Sci. 6, 169 (2013)CrossRefGoogle Scholar
  25. 25.
    Z. Han, Z. Tang, P. Li, G. Yang, Q. Zheng, J. Yang, Nanoscale 5, 5462 (2013)CrossRefGoogle Scholar
  26. 26.
    M. Bai, X.Z. Li, S. Ducharme, J. Phys. Condens. Matter 19, 196211 (2007)CrossRefGoogle Scholar
  27. 27.
    Z.Y. Jiang, G.P. Zheng, Z. Han, Y.Z. Liu, J.H. Yang, J. Appl. Phys. 115, 204101, (2014)CrossRefGoogle Scholar
  28. 28.
    G.P. Zheng, Z.Y. Jiang, Z. Han, J.H. Yang, Express Polym. Lett. 10, 730 (2016)CrossRefGoogle Scholar
  29. 29.
    Z. Han, K. Zhan, X. Wang, G. Zheng, J. Yang, Adv. Electron. Mater. 2, 1 (2016)CrossRefGoogle Scholar
  30. 30.
    B. Sudesh, N. Kumar, S. Das, C. Bernhard, G.D. Varma, Supercond. Sci. Technol. 26, 9 (2013)CrossRefGoogle Scholar
  31. 31.
    S. Verma, R.K. Dutta, RSC Adv. 5, 77192 (2015)CrossRefGoogle Scholar
  32. 32.
    Y. Zhao, X. Song, Q. Song, Z. Yin, CrystEngComm 14, 6710 (2012)CrossRefGoogle Scholar
  33. 33.
    R.I. Mahdi, W.C. Gan, W. Majid, Sensors 14, 19115–19127 (2014)CrossRefGoogle Scholar
  34. 34.
    M. Kobayashi, K. Tashiro, H. Tadokoro, Macromolecules 8, 158–171 (1974)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityKowloonChina

Personalised recommendations