Skip to main content
Log in

Enhanced structural, optical, electrochemical and magnetic behavior on manganese doped tin oxide nanoparticles via chemical precipitation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of Sn1−xMnxO2 (X = 0.00, 0.015, 0.025, 0.035 and 0.045 mol%) nanoparticles have been synthesized by effective chemical precipitation method. In this work to explore the structural, morphological, optical, electrochemical and magnetic properties of the pure and Manganese doped SnO2 nanoparticles are characterized on the TG/DTA, XRD, SEM/EDX, HR-TEM, FTIR, UV–DRS, PL, CV, and VSM analysis. XRD indicates that the tetragonal crystal structure, with the crystallite size of range from 37 to 11 nm. The structure, size, shape, and morphology analysis by SEM and HR-TEM was spherical shape is observed. FTIR studies on functional group analysis of pure and Manganese doped SnO2 nanoparticles. The peak appeared at 619 cm−1 due to O–Sn–O stretching vibration of clearly indicates the formation of SnO2 phase. UV–DRS absorption measures were the optical band gap energies decreasing with increasing Mn (0.00%, 0.015%, 0.025%, 0.035% and 0.045%) concentration from 3.89 to 3.75 eV. UV–DRS analyzed the mechanisms of electron–hole recombination and charge carriers separation. Further, the electrochemical properties were subsequently characterized by cyclic voltammetry. From the CV performance of the supercapacitor application was analyzed, the higher capacitance value of pure and Manganese (0.045%) doped SnO2 electrode 156.7 Fg−1 and 285.2 Fg−1 observed in the scan rate of 5 mV s−1 for the product calcinated at 700 °C. The M–H loop of pure SnO2 nanoparticles showed diamagnetism, Manganese doped SnO2 nanoparticles show weak ferromagnetic and paramagnetic behavior at room temperature as measured by VSM. A tin oxide with lower manganese concentration show larger magnetization and with increasing manganese concentration the retentivity and coercivity are found to decrease. The magnetic parameters such as saturation magnetization (MS), coercivity (HC) and retentivity (MR) are obtained from VSM data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Chi-Hsiu, Y.L. Lee, Appl. Phys. Lett. 91, 053503 (2007). https://doi.org/10.1063/1.2768311

    Article  Google Scholar 

  2. M.A. Walling, J.A. Novak, R.E. Jason, Shepard, Int. J. Mol. Sci. 10, 441–491 (2009). https://doi.org/10.3390/ijms10020441

    Article  Google Scholar 

  3. C.B. Wladimir Marine, B.-L. Su, Chem. Phys. Lett. 438, 67–71 (2007). https://doi.org/10.1016/j.cplett.2007.02.061

    Article  Google Scholar 

  4. V.S. Vaishanv, P.D. Patel, N.G. Patel, Mater. Manuf. Process. 21, 257–261 (2006). https://doi.org/10.1080/10426910500464511

    Article  Google Scholar 

  5. J. Hays, A. Punnoose, R. Baldner, M.H. Engelhard, J. Peloquin, K.M. Reddy, Phys. Rev. B 72, 075203 (2005). https://doi.org/10.1103/PhysRevB.72.075203

    Article  Google Scholar 

  6. Y.W. Heo, J. Kelly, D.P. Norton, A.F. Hebard, S.J. Pearton, J.M. Zavada, L.A. Boatner, Electron. Solid-State Lett. 7, G309–G312 (2004). https://doi.org/10.1149/1.1814596

    Article  Google Scholar 

  7. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. Von Molnar, M.L. Roukes, A. Yu Chtchelkanova, D.M. Treger, Science 294, 1488–1495 (2001). https://doi.org/10.1126/science.1065389

    Article  Google Scholar 

  8. K.S. Burch, D.D. Awschalom, D.N. Basov, J. Magn. Magn. Mater. 320, 3207–3228 (2008). https://doi.org/10.1016/j.jmmm.2008.08.060

    Article  Google Scholar 

  9. R. Viswanatha, S. Sapra, S. Sen Gupta, B. Satpati, P.V. Satyam, B.N. Dev, D.D. Sarma, J. Phys. Chem. B 108, 6303–6310 (2004). https://doi.org/10.1021/jp049960o

    Article  Google Scholar 

  10. P. Sharma, A. Gupta, F.J. Owens, A. Inoue, K. Venkat Rao, J. Magneti, Magn. Mater. 282, 115–121 (2004). https://doi.org/10.1016/j.jmmm.2004.04.028

    Article  Google Scholar 

  11. S.B. Ogale, R.J. Choudhary, J.P. Buban, S.E. Lofland, S.R. Shinde, S.N. Kale, V.N. Kulkarni, Phys. Rev. Lett. 91, 077205 (2003). https://doi.org/10.1103/PhysRevLett.91.077205

    Article  Google Scholar 

  12. H. Kimura, T. Fukumura, M. Kawasaki, K. Inaba, T. Hasegawa, H. Koinuma, Appl. Phys. Lett. 80, 94–96 (2002). https://doi.org/10.1063/1.1430856

    Article  Google Scholar 

  13. Z.M. Tian, S.L. Yuan, J.H. He, P. Li, S.Q. Zhang, C.H. Wang, Y.Q. Wang, S.Y. Yin, L. Liu, J. Alloys Compd. 466, 26–30 (2008). https://doi.org/10.1016/j.jallcom.2007.11.054

    Article  Google Scholar 

  14. N.H. Hong, A. Ruyter, W. Prellier, J. Sakai, N.T. Huong, J. Phys. Condens. Matter 17, 6533 (2005). https://doi.org/10.1103/PhysRevB.75.205206

    Article  Google Scholar 

  15. N.H. Hong, J. Sakai, W. Prellier, A. Hassini, J. Phys. Condens. Matter 17, 1697 (2005). https://doi.org/10.1088/0953-8984/17/10/023

    Article  Google Scholar 

  16. C.B. Fitzgerald, M. Venkatesan, L.S. Dorneles, R. Gunning, P. Stamenov, J.M.D. Coey, P.A. Stampe, R.J. Kennedy, E.C. Moreira, U.S. Sias, Phys. Rev. B 74, 115307 (2006). https://doi.org/10.1103/PhysRevB.74.115307

    Article  Google Scholar 

  17. K.H. Gao, Z.Q. Li, X.J. Liu, W. Song, H. Liu, E.Y. Jiang, Solid State Commun. 138, 175–178 (2006). https://doi.org/10.1016/j.ssc.2006.02.032

    Article  Google Scholar 

  18. F. Gu, S.F. Wang, C.F. Song, M.K. Lü, Y.X. Qi, G.J. Zhou, D. Xu, D.R. Yuan, Chem. Phys. Lett. 372, 451–454 (2003). https://doi.org/10.1016/S0009-2614(03)00440-8

    Article  Google Scholar 

  19. H. Jin, Y. Xu, G. Pang, W. Dong, Q. Wan, Y. Sun, S. Feng, Mater. Chem. Phys. 85, 58–62 (2004). https://doi.org/10.1016/j.matchemphys.2003.12.006

    Article  Google Scholar 

  20. F. Séby, M. Potin-Gautier, E. Giffaut, O.F.X. Donard, Geochim. Cosmochim. Acta 65, 3041–3053 (2001). https://doi.org/10.1016/S0016-7037(01)00645-7

    Article  Google Scholar 

  21. C. Xu, J. Tamaki, N. Miura, N. Yamazoe, J. Mater. Sci. 27, 963–971 (1992). https://doi.org/10.1007/bf01197649

    Article  Google Scholar 

  22. H. Bastami, E. Taheri-Nassaj, J. Alloys Compd. 495, 121–125 (2010). https://doi.org/10.1016/j.jallcom.2010.01.099

    Article  Google Scholar 

  23. C. Li, Z. Yu, S. Fang, S. Wu, Y. Gui, R. Chen, J. Phys. Conf. Ser. 152, 012033 (2009). https://doi.org/10.1088/1742-6596/152/1/012033

    Article  Google Scholar 

  24. N.S. Sabri, M.S.M. Deni, A. Zakaria, M.K. Talari, Phys. Procedia 25, 233–239 (2012). https://doi.org/10.1016/j.phpro.2012.03.077

    Article  Google Scholar 

  25. P.K. Sarkar, S. Bhattacharjee, M. Prajapat, A. Roy, RSC Adv. 5, 105661–105667 (2015). https://doi.org/10.1039/C5RA15581A

    Article  Google Scholar 

  26. B. Venugopal, B. Nandan, A. Ayyachamy, V. Balaji, S. Amirthapandian, B.K. Panigrahi, T. Paramasivam, RSC Adv. 4, 6141–6150 (2014). https://doi.org/10.1039/C3RA46378H

    Article  Google Scholar 

  27. B. Karunagaran, R.T. Rajendra Kumar, D. Mangalaraj, S.K. Narayandass, G. Mohan Rao, Cryst. Res. Technol. 37, 1285–1292 (2002). https://doi.org/10.1002/crat.200290004

    Article  Google Scholar 

  28. N.J.S. Kissinger, M. Jayachandran, K. Perumal, C.S. Raja, Bull. Mater. Sci. 30, 547–551 (2007). https://doi.org/10.1007/s12034-007-0085-7

    Article  Google Scholar 

  29. B. Sathyaseelan, K. Senthilnathan, T. Alagesan, R. Jayavel, K. Sivakumar, Mater. Chem. Phys. 124, 1046–1050 (2010). https://doi.org/10.1016/j.matchemphys.2010.08.029

    Article  Google Scholar 

  30. N. Tahir, S.T. Hussain, M. Usman, S.K. Hasanain, A. Mumtaz, Appl. Surf. Sci. 25, 8506–8510 (2009). https://doi.org/10.1016/j.apsusc.2009.06.003

    Article  Google Scholar 

  31. S.K. Pandian, K. Karthik, K. Sureshkumar, N. Victor Jaya, Mater. Manuf. Proc. 27, 130–134 (2012). https://doi.org/10.1080/10426914.2011.557130

    Article  Google Scholar 

  32. K. Anandan, V. Rajendran, Superlattices Microstruct. 85, 185–197 (2015). https://doi.org/10.1016/j.spmi.2015.05.031

    Article  Google Scholar 

  33. P. Rajeshwaran, A. Sivarajan, J. Mater. Sci. Mater. Electron. 26, 539–546 (2015). https://doi.org/10.1007/s10854-014-2432-y

    Article  Google Scholar 

  34. A.S. A.Azam, S.S. Ahmed, A.H. Habib, Naqvi, J. Alloys Compd. 523, 83–87 (2012). https://doi.org/10.1016/j.jallcom.2012.01.072

    Article  Google Scholar 

  35. V. Agrahari, A.K. Tripathi, M.C. Mathpal, A.C. Pandey, S.K. Mishra, R.K. Shukla, A. Agarwal, J. Mater. Sci. Mater. Electron. 26, 9571–9582 (2015). https://doi.org/10.1007/s10854-015-3620-0

    Article  Google Scholar 

  36. S.M. Priya, A. Geetha, K. Ramamurthi, J. Sol-Gel Sci. Technol. 78, 365–372 (2016). https://doi.org/10.1007/s10971-016-3966-7

    Article  Google Scholar 

  37. S.M. Sedghi, Y. Mortazavi, A. Khodadadi, Sens. Actuators B 145, 7–12 (2010). https://doi.org/10.1016/j.snb.2009.11.002

    Article  Google Scholar 

  38. C.M. Liu, X.T. Zu, Q.M. Wei, L.M. Wang, J. Phys. D. Appl. Phys. 39, 2494 (2006). https://doi.org/10.1088/0022-3727/39/12/004

    Article  Google Scholar 

  39. F. Gu, S.F. Wang, M.K. Lu, G.J. Zhou, D. Xu, D.R. Yuan, J. Phys. Chem. B 108, 8119–8123 (2004). https://doi.org/10.1021/jp036741e

    Article  Google Scholar 

  40. M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Adv. Mater. 13, 113–116 (2001)

    Article  Google Scholar 

  41. Q. Tang, W. Zhou, J. Shen, W. Zhang, L. Kong, Y. Qian, Chem. Commun. 21, 712–713 (2004). https://doi.org/10.1039/B313387G

    Article  Google Scholar 

  42. M.K. Singh, M.C. Mathpal, A. Agarwal, Chem. Phys. Lett. 536, 87–91 (2012). https://doi.org/10.1016/j.cplett.2012.03.084

    Article  Google Scholar 

  43. W. Wang, Wu Lei, T. Yao, X. Xia, W. Huang, Q. Hao, X. Wang, Electrochim. Acta 108, 118–126 (2013). https://doi.org/10.1016/j.electacta.2013.07.012

    Article  Google Scholar 

  44. K. Sathishkumar, N. Shanmugam, N. Kannadasan, S. Cholan, G. Viruthagiri, J. Mater. Sci. Mater. Electron. 26, 1881–1889 (2015). https://doi.org/10.1007/s10854-014-2624-5

    Article  Google Scholar 

  45. S. Nagamuthu, S. Vijayakumar, G. Muralidharan, Dalton Trans. 43, 17528–17538 (2014). https://doi.org/10.1039/c4dt02287d

    Article  Google Scholar 

  46. K.R. Prasad, N. Miura, Electrochem. Commun. 6, 849–852 (2004). https://doi.org/10.1016/j.elecom.2004.06.009

    Article  Google Scholar 

  47. C.C. Hu, C.C. Wang, K.H. Chang, Electrochim. Acta 52, 2691–2700 (2007). https://doi.org/10.1016/j.electacta.2006.09.026

    Article  Google Scholar 

  48. K. Karthikeyan, V. Aravindan, S.B. Lee, I.C. Jang, H.H. Lim, G.J. Park, M. Yoshio, Y.S. Lee, J. Alloys Compd. 504, 224–227 (2010). https://doi.org/10.1016/j.jallcom.2010.05.097

    Article  Google Scholar 

  49. S. Dinesh, M. Anandan, V.K. Premkumar, S. Barathan, G. Sivakumar, N. Anandhan, Mater. Sci. Eng. B 214, 37–45 (2016). https://doi.org/10.1016/j.mseb.2016.08.006

    Article  Google Scholar 

  50. T.R. Cunha, I.M. Costa, R.J.S. Lima, J.G.S. Duque, C.T. Meneses, J. Supercond. Nov. Magn. 26, 2299–2302 (2013). https://doi.org/10.1007/s10948-012-1479-3

    Article  Google Scholar 

  51. P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Ahuja, J.M. Guillen, B. Johansson, G.A. Gehring, Nat. Mater. 2, 673 (2003). https://doi.org/10.1038/nmat984

    Article  Google Scholar 

  52. O.D. Jayakumar, H.G. Salunke, R.M. Kadam, M. Mohapatra, G. Yaswant, S.K. Kulshreshtha, Nanotechnology 17, 1278 (2006). https://doi.org/10.1088/0957-4484/17/5/020

    Article  Google Scholar 

  53. K. Dwight, N. Menyuk, Phys. Rev. 119, 1470 (1960). https://doi.org/10.1103/PhysRev.119.1470

    Article  Google Scholar 

  54. D.G. Wickham, N. Menuyk, K. Dwight, J. Phys. Chem. Solids 20, 316 (1961). https://doi.org/10.1016/0022-3697(61)90020-8

    Article  Google Scholar 

  55. A. Kaminski, S.D. Sarma, Phys. Rev. Lett. 17, 247202 (2002). https://doi.org/10.1103/PhysRevLett.88.247202

    Article  Google Scholar 

  56. P.I. Archer, D.R. Gamelin, J. Appl. Phys. 99, 08M107 (2006). https://doi.org/10.1063/1.2165790

    Article  Google Scholar 

  57. H.S. Hsu, J.C.A. Huang, S.F. Chen, C.P. Liu, Appl. Phys. Lett. 90, 102506 (2007). https://doi.org/10.1063/1.2711763

    Article  Google Scholar 

  58. J. Okabayashi, K. Nomura, S. Kono, Y. Yamada, Jpn. J. Appl. Phys. 51, 023003–023004 (2012). https://doi.org/10.1143/JJAP.51.023003

    Google Scholar 

  59. V. Agrahari, M.C. Mathpal, S. Kumar, M. Kumar, A. Agarwal, J. Mater. Sci. Mater. Electron. 27, 6020–6029 (2016). https://doi.org/10.1007/s10854-016-4525-2

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. V. Ramaswamy Professor and Head, Department of Physics, Annamalai University for Lab facility and experimental support for helpful discussions. Wish to thank Centralized Instrumentation and Services Laboratory (CISL), Annamalai University, Annamalai Nagar, Tamilnadu, India and Sophisticated Analytical Instrumentation Facility (SAIF), Cochin, Kerala and CIF, Pondicherry University, Puducherry and CIF, IIT Guwahati, Guwahati for providing their analytical instrument facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sivakumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest concerning this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivakumar, S., Manikandan, E. Enhanced structural, optical, electrochemical and magnetic behavior on manganese doped tin oxide nanoparticles via chemical precipitation method. J Mater Sci: Mater Electron 30, 7606–7617 (2019). https://doi.org/10.1007/s10854-019-01076-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01076-8

Navigation