Skip to main content
Log in

Investigation of third-order nonlinear optical properties of nanostructured Ni-doped CdS thin films under continuous wave laser illumination

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the third-order nonlinear optical (NLO) properties and optical limiting (OL) thresholds of pure CdS and Ni-doped CdS thin films have been investigated with the Z-scan technique under continuous wave laser excitation. Nanocrystalline CdS thin films with various doping concentrations of Ni (0%, 1%, 3%, 5% and 10 at.%) are prepared by spray-pyrolysis technique. XRD patterns reveal that all the prepared films are polycrystalline and the incorporation of Ni does not lead to major changes in the crystalline phase of Cd1−xNixS thin films. The surface morphology of the prepared films is impacted by the Ni-doping and is indicated by Field Emission Scanning Electron Microscopy (FESEM) images. With an increase in Ni-doping concentration, the energy band-gap value decreased from 2.48 eV to 2.23 eV. From the Z-scan data, it is observed that the material show strong two-photon absorption (2PA) and with an increase in Ni-doping concentrations from 0 to 10 at.%, the nonlinear absorption coefficient (β) are enhanced from 0.92 × 10−5 to 4.46 × 10−5 (cm W−1), nonlinear refractive index (n2) from 0.2967 × 10−9 to 0.1297 × 10−8 (cm2 W−1) and thereby the third-order NLO susceptibility (χ(3)) values also increased from 1.7075 × 10−6 to 7.4743 × 10−6 (esu). OL characteristics of the prepared films are studied at the experimental wavelength. The results propose that the Cd1−xNixS film is a capable material for nonlinear optical devices at 532 nm and optical power limiting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Hernandez-Borja, Y. Vorobiev, R. Ramirez-Bon, Sol. Energy Mater. Sol. Cells 95, 1882 (2011)

    Article  Google Scholar 

  2. W. Wondmagegn, I. Mejia, A. Salas-Villasenor, H. Stiegler, M. Quevedo-Lopez, R. Pieper, B. Gnade, Microelectron. Eng. 157, 64 (2016)

    Article  Google Scholar 

  3. Y.L. Song, Y. Li, F.Q. Zhou, P.F. Ji, X.J. Sun, M.L. Wan, M.L. Tian, Mater. Lett. 196, 8 (2017)

    Article  Google Scholar 

  4. B.-G. An, Y.W. Chang, H.-R. Kim, G. Lee, M.-J. Kang, J.-K. Park, J.-C. Pyun, Sens. Actuat. B 221, 884 (2015)

    Article  Google Scholar 

  5. M. Afzaal, P. O’Brien, J. Mater. Chem. 16, 1597 (2006)

    Article  Google Scholar 

  6. M. Gunasekaran, M. Ichimura, Sol. Energ Mater Sol. Cell 91, 774–778 (2007)

    Article  Google Scholar 

  7. H. Pan, J.B. Yi, L. Shen, R.Q. Wu, J.H. Yang, Y.P. Feng, J. Ding, L.H. Van, J.H. Yin, Phys. Rev. Lett. 99, 127201 (2009)

    Article  Google Scholar 

  8. H. Zeng, J. Han, D. Qian, Y. Gu, Opt. Int. J. Light Electron. Opt. 125, 6558–6561 (2014)

    Article  Google Scholar 

  9. T. Thilak, M. Basheer Ahamed, G. Vinitha, Opt. Int. J. Light Electron. Opt. 124, 4716–4720 (2013)

    Article  Google Scholar 

  10. S. Abed, M.S. Aida, K. Bouchouit, A. Arbaoui, K. Iliopoulos, B. Sahraoui, Opt. Mater. 33, 968–972 (2011)

    Article  Google Scholar 

  11. X. Li, J.V. Embden, J.W. Chon, G. Min, Appl. Phys. Lett. 94, 103117-1–103117-3 (2009)

    Google Scholar 

  12. M.A. Islam, F. Haque, K.S. Rahman, N. Dhar, M.S. Hossain, Y. Sulaiman, N. Amin, Optik Int. J. Light Electron. Opt. 126, 3177–3180 (2015)

    Article  Google Scholar 

  13. K. Rupali, P. Amit, W. Ravindra, J. Ashok, B. Haribhau, A. Rahul, B. Ajinkya, N. Shruthi, S. Priyanka, J. Sandesh, J. Nano Electron. Phys. 10, 03005 (2018)

    Google Scholar 

  14. H. Sakai, T. Tamaru, T. Sumomogi, H. Ezumi, B. Ullrich, Jpn. J. Appl. Phys. 37, 4149 (1998)

    Article  Google Scholar 

  15. A. Rmili, F. Ouachtari, A. Bouaoud, A. Louardi, T. Chtouki, B. Elidrissi, H. Erguig, J. Alloys Compd. 557, 53–59 (2013)

    Article  Google Scholar 

  16. I.M.E.I. Radaf, T.A. Hameed, I.S. Yahia, Mater. Res. Express 5, 066416 (2018)

    Article  Google Scholar 

  17. S. Aksu, E. Bacaksiz, M. Parlak, S. Yilmaz, I. Polat, M. Altunbas, M. Turksoy, R. Topkaya, K. Ozdogan, Mater. Chem. Phys. 130, 340 (2011)

    Article  Google Scholar 

  18. S. Butt, N.A. Shah, A. Nazir, Z. Ali, A. Maqsood, J. Alloys Compd. 587, 582 (2014)

    Article  Google Scholar 

  19. S. Yilmaz, Appl. Surf. Sci. 357, 873 (2015)

    Article  Google Scholar 

  20. A. Podesta, N. Armani, G. Salviati, N. Romeo, A. Bosio, M. Prato, Thin Solid Films 448, 511–512 (2006)

    Google Scholar 

  21. R. Bairy, A. Jayarama, G.K. Shivakumar, S.D. Kulkarni, S.R. Maidur, P.S. Patil, Physica B 555, 145–151 (2019)

    Article  Google Scholar 

  22. T. Chtouki, Y. El Kouari, B. Kulyk, A. Louardi, A. Rmili, H. Erguig, B. Elidrissi, L. Soumahoro, B. Sahraoui, J. Alloys Compd. 696, 1292 (2017)

    Article  Google Scholar 

  23. A.T. Ravichandran, A. Robert Xavier, K. Pushpanathan, B.M. Nagabhushana, R. Chandramohan, J. Mater. Sci.: Mater. Electron. 27, 2693–2700 (2016)

    Google Scholar 

  24. C. Gayathri, A. Ramalingam, Spectrochem. Acta A 69, 980–984 (2008)

    Article  Google Scholar 

  25. G. Sree Kumar, B. Valsala Milka, C.I. Muneera, K. Sathiyamoorthy, C. Vijayan, Opt. Mater. 30, 311–313 (2007)

    Article  Google Scholar 

  26. L. Zhang, T. Yabu, I. Taniguchi, Mater. Res. Bull. 44, 707–713 (2009)

    Article  Google Scholar 

  27. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, Quantum Electron. 26, 760 (1990)

    Article  Google Scholar 

  28. Standard, JCPDS data card no. 892944. Physica 27, 337 (1961)

    Article  Google Scholar 

  29. B. Kulyk, V. Figa, V. Kapustianyk, M. Panasyuk, R. Serkiz, P. Demchenko, Acta Phys. Pol. A 123, 92–97 (2013)

    Article  Google Scholar 

  30. S. Mageswari, L. Dhivya, B. Palanivel, R. Murugan, J. Alloys Compd. 545, 41–45 (2012)

    Article  Google Scholar 

  31. J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, New York, 1974), p. 159

    Book  Google Scholar 

  32. A. Podesta, N. Armani, G. Salviati, M. Romeo, A. Bosio, M. Prato, Thin Solid Films 511, 448 (2006)

    Article  Google Scholar 

  33. R.W. Boyd, Nonlinear Optics, Text Book Version, 3rd ed. (Elseveir, Amsterdam), pp. 1–50 (2008)

  34. Z.S. Fadhul, E.A.H.F. Ali, S.R. Maidur, P.S. Patil, M. Shkir, F.Z. Henari, J. Nonlinear Opt. Phys. Mater. 27, 1850012 (2018)

    Article  Google Scholar 

  35. S.R. Maidur, P.S. Patil, Opt. Mater. 84, 28 (2018)

    Article  Google Scholar 

  36. N.K.M.N. Srinivas, S.V. Rao, D.N. Rao, J. Opt. Soc. Am. B 20, 2470 (2003)

    Article  Google Scholar 

  37. B. Gu, X.Q. Huang, S.Q. Tan, M. Wang, W. Ji, Appl. Phys. B 95, 375 (2009)

    Article  Google Scholar 

  38. B. Gu, J. Wang, J. Chen, Y.-X. Fan, J. Ding, H. Twang, Opt. Express, 13, 9230 (2005)

    Article  Google Scholar 

  39. B. Gu, W. Ji, H.Z. Yang, H.T. Wang, Appl. Phys. Lett. 96, 081104 (2010)

    Article  Google Scholar 

  40. J. Chen, X. Wang, Q. Ren, P.S. Patil, T. Li, H. Yang, J. Zhang, G. Li, L. Zhu, Appl. Phys. A 105, 723 (2011)

    Article  Google Scholar 

  41. H. Morkoc, U. Ozgur, first ed., (Wiley-VCH), pp. 1–488 (2009)

  42. B. Gu, K. Lou, J. Chen, H.-T. Wang, W. Ji, J. Opt. Soc. Am. B 27, 2438 (2010)

    Article  Google Scholar 

  43. P.S. Patil, S.R. Maidur, S.V. Rao, S.M. Dharmaprakash, Opt. Laser Technol. 81, 70 (2016)

    Article  Google Scholar 

  44. M. Sheik-Bahae, A.A. Said, T. Wei, D.J. Hagen, E.W. Van Stryland, IEEE J. Quant. Electron. 26, 760 (1990)

    Article  Google Scholar 

  45. M. Sheik-Bahae, A.A. Said, E.W. Van Stryland, Opt. Lett. 14, 955–957 (1989)

    Article  Google Scholar 

  46. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760–769 (1990)

    Article  Google Scholar 

  47. A. Rherari, M. Addou, Z. Sofiani, M. El, M. Jbilou, M. Diani, A. Chahboun, J. Mater. Environ. Sci. 7, 554 (2016)

    Google Scholar 

  48. N. Demetrios, I.C. Christodoulides, G.J. Khoo, G.I. Salamo, E.W. Stegeman, Van Stryland, Adv. Opt. Photonics 2, 60–200 (2010)

    Article  Google Scholar 

  49. S.V. Rao, P.T. Anusha, T.S. Prashant, D. Swain, S.P. Tewari, Mater. Sci. Appl. 2, 299 (2011)

    Google Scholar 

  50. M.H. Mahdieh, M.A. Jafarabadi, Opt. Laser Technol. 44, 78–940 (2012)

    Article  Google Scholar 

  51. K.K. Nagaraja, S. Pramodini, H.S. Nagaraja, P. Poornesh, J. Phys. D 46, 055106 (2013)

    Article  Google Scholar 

  52. M. Rashidian, D. Dorranian, Rev. Adv. Mater. Sci. 40, 110 (2015)

    Google Scholar 

  53. P. Prem Kiran, S. Venugopal Rao, M. Ferrari, B.M. Krishna, H. Sekhar, S. Alee, D. Narayana Rao, Nonlinear Opt. Quantum Opt. 40, 223 (2010)

    Google Scholar 

  54. N. Venkatram, D. Narayana Rao, M.A. Akundi, Opt. Express 13, 867 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The author Raghavendra Bairy would like to express thanks to NMAM Institute of Technology, Nitte, India for providing the research facilities and encouragement to carry out the study. Authors are grateful to Mangalore University DST-PURSE laboratory for providing the FESEM facility and the Department of Physics, KLE college of Engineering, Hubballi for providing the Z-scan facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghavendra Bairy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bairy, R., Jayarama, A., Shivakumar, G.K. et al. Investigation of third-order nonlinear optical properties of nanostructured Ni-doped CdS thin films under continuous wave laser illumination. J Mater Sci: Mater Electron 30, 6993–7004 (2019). https://doi.org/10.1007/s10854-019-01017-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01017-5

Navigation