Influence of the spark-plasma texturing conditions on the intragranular features of Bi-2223 ceramic samples

  • L. Pérez-Acosta
  • E. Govea-AlcaideEmail author
  • F. Rosales-Saiz
  • J. G. Noudem
  • I. F. Machado
  • R. F. Jardim


The influence of the spark-plasma texturing (SPT) conditions on the intragranular superconducting properties of \(\hbox {Bi}_{1.65}\hbox {Pb}_{0.35}\hbox {Sr}_2\hbox {Ca}_2\hbox {Cu}_3\hbox {O}_{10+\delta }\) (Bi-2223) samples has been investigated. Also, the SPT samples were subjected to a post-annealing heat treatments (PAHT) in different times. Intragranular superconducting features, extracted from magnetoresistance measurements, \(\rho (T,H)\), in applied magnetic fields up to 9 T, were studied by analyzing the temperature dependence of the in-plane upper critical field, \(H^{ab}_\text{c2}(T)\), and the magnetic field dependence of the pinning energy at zero temperature, U(0, H). The results indicated that, before and after the PAHT, values of the \(H^{ab}_\text{c2}(0)\), obtained by using the Werthamer–Helfand–Hohenberg formula, increased \(\sim 21 \%\), i.e., from 115.8 to 140.2 T. We have also found that the effective intragranular pinning energy at zero applied magnetic field, \(U_0 = U(0,0)\), also increased over approximately three times, from 0.28 to 0.98 eV. These results strong strongly indicate that the SPT process is responsible for inducing deoxygenation at the intragranular level of ceramic samples, a feature presumably occurring near of the end of planar defects.



The authors acknowledge financial support from Brazil’s agencies FAPESP (Grants Nos. 2013/07296-2, 2013/20181-0, and 2014/19245-6), CNPq (Grants Nos. 168255/2014-6, 444712/2014-3, 306006/2105-4, and 303329/2016-5), and CAPES/MES (Grants Nos. 1470/2010 and 157/2012), and the Petrobras company.


  1. 1.
    O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, M. Herrmann, Adv. Eng. Mater. 16, 830–849 (2014)CrossRefGoogle Scholar
  2. 2.
    M.Z. Becker, N. Shomrat, Y. Tsur, Adv. Mater, 30, e1706369 (2018)CrossRefGoogle Scholar
  3. 3.
    J.G. Noudem, D. Kenfaui, D. Chateigner, M. Gomina, Scr. Mater. 66, 258–260 (2012)CrossRefGoogle Scholar
  4. 4.
    L. Pérez-Acosta, E. Govea-Alcaide, J.G. Noudem, I.F. Machado, S.H. Masunaga, R.F. Jardim, Ceram. Int. 42, 13248–13255 (2016)CrossRefGoogle Scholar
  5. 5.
    E. Govea-Alcaide, I.F. Machado, R.F. Jardim, J. Appl. Phys. 117, 043903–043907 (2015)CrossRefGoogle Scholar
  6. 6.
    E. Govea-Alcaide, I.F. Machado, M. Bertolete-Carneiro, P. Muné, R.F. Jardim, J. Appl. Phys. 112, 113906–13913 (2012)CrossRefGoogle Scholar
  7. 7.
    U. Anselmi-Tamburini, S. Gennari, J.E. Garay, Z.A. Munir, Mater. Sci. Eng. A 394, 139–148 (2005)CrossRefGoogle Scholar
  8. 8.
    C. Wang, L. Cheng, Z. Zhao, Comput. Mater. Sci. 49, 351–362 (2010)CrossRefGoogle Scholar
  9. 9.
    F. Rosales-Saiz, L. Pérez-Acosta, I.F. Machado, J.E. Pérez-Fernández, R.F. Jardim, E. Govea-Alcaide, Ceram. Int. 42, 17482–17488 (2016)CrossRefGoogle Scholar
  10. 10.
    I. García-Fornaris, I. Calzada, E. Govea-Alcaide, I.F. Machado, R.F. Jardim, J. Supercond. Novel Magn. 28, 3487–3492 (2015)CrossRefGoogle Scholar
  11. 11.
    T.T. Palstra, B. Batlogg, L.F. Scheemeyer, J.V. Waszczak, Phys. Rev. B 43, 3756–3759 (1991)CrossRefGoogle Scholar
  12. 12.
    I. Matsubara, H. Tanigawa, T. Ogura, H. Yamashita, M. Kinoshita, T. Kawai, Phys. Rev. B 45, 7414–7417 (1992)CrossRefGoogle Scholar
  13. 13.
    M.T. Escote, V.A. Meza, R.F. Jardim, L. Ben-Dor, M.S. Torikachvili, A.H. Lacerda, Phys. Rev. B 66, 144503–144508 (2002)CrossRefGoogle Scholar
  14. 14.
    T.T.M. Palstra, B. Batlogg, R.B. van Dover, L.F. Schneemeyer, J.V. Waszczak, Phys. Rev. B 41, 6621–6632 (1990)CrossRefGoogle Scholar
  15. 15.
    E.S. Vlakhova, K.A. Nenkovb, M. Ciszekc, A. Zaleskic, Y.B. Dimitrievd, Physica C 225, 149–157 (1994)CrossRefGoogle Scholar
  16. 16.
    M. Dogruer, Y. Zalaoglu, A. Varilci, C. Terzioglu, G. Yildirim, O. Ozturk, J. Supercond. Novel Magn. 25, 961–968 (2012)CrossRefGoogle Scholar
  17. 17.
    G. Yildirim, M. Akdogan, S.P. Altintas, M. Erdem, C. Terzioglu, A. Varilci, Physica B 406, 1853–1857 (2011)CrossRefGoogle Scholar
  18. 18.
    G. Blatter, M.V. Feigelman, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Rev. Mod. Phys. 66, 1125–1388 (1994)CrossRefGoogle Scholar
  19. 19.
    M. Hernández-Wolpez, A. Cruz-García, O. Vázquez-Robaina, R.F. Jardim, P. Muné, Physica C 525–526, 84–88 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Física, Facultad de Informática y Ciencias ExactasUniversidad de CamagüeyCamagüeyCuba
  2. 2.Departamento de FísicaUniversidade Federal do AmazonasManausBrazil
  3. 3.Departamento de Matemática-Física, Facultad de Ciencias Informáticas, Naturales y ExactasUniversidad de GranmaBayamoCuba
  4. 4.Normandie Univ, ENSICAEN, UNICAEN, CNRS, CRISMATCaenFrance
  5. 5.Departamento de Engenharia Mecatrônica e Sistemas Mecânicos, Escola PolitécnicaUniversidade de São PauloSão PauloBrazil
  6. 6.Departamento dos Física de Materiais e Mecânica, Instituto de FísicaUniversidade de São PauloSão PauloBrazil

Personalised recommendations