Skip to main content
Log in

Interfacial defect passivation in CH3NH3PbI3 perovskite solar cells using modifying of hole transport layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In perovskite (PSK) solar cells, the selective contacts between interfaces of PSK and charge carrier have an important role in power conversion efficiency (PCE). The active defect sites in the device interfaces control the charge and ionic accumulation that can disturb the operation of devices. In this work, mesoporous PSK solar cells were fabricated and the interfacial defects between polymer HTL and PSK layers were neutralized by modifying HTL. 31% PCE enhancement was achieved by replacing poly(3-hexylthiophene) (P3HT): phenyl-C61-butyric acid methyl ester (PCBM) HTL instead of the P3HT HTL in the mesoporous perovskite device. The achieved PCE improvement strongly depends on the interface between PSK and HTM that was studied by optical and electrochemical impedance analyses. Introducing PCBM to P3HT HTL overcame the challenge of the interface defects caused by the non-uniformity of the PSK layer and the inappropriate presence of the pinholes. This architecture reduced the shunt-leakage paths and enhanced the incident photon harvesting, leading to the enhancement of PCE from 10 to 13.14%. These desired effects of P3HT: PCBM were confirmed by enhancement of the recombination resistance and reduction of the charge accumulation at the interfaces. Further, the defect passivation by interface modification reduced the hysteresis behavior of the PSK device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131(17), 6050–6051 (2009)

    Article  CAS  Google Scholar 

  2. M. Saliba et al., Science 354(6309), 206–209 (2016)

    Article  CAS  Google Scholar 

  3. F.A. Roghabadi, V. Ahmadi, K.O. Aghmiuni, RSC Adv. 6(113), 112677–112685 (2016)

    Article  CAS  Google Scholar 

  4. C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, lnorg. Chem. 52(15), 9019–9038 (2013)

    Article  CAS  Google Scholar 

  5. D. Ouyang, Z. Huang, W.C.H. Choy, Adv. Funct. Mater. 29(1), 1804660 (2019)

    Article  CAS  Google Scholar 

  6. Y. Zhao et al., ACS Energy Lett. 3(12), 2891–2898 (2018)

    Article  CAS  Google Scholar 

  7. H.L. Zhu et al., ACS Nano 10(7), 6808–6815 (2016)

    Article  CAS  Google Scholar 

  8. H. Zhang et al., Energy Environ. Sci. 11(8), 2253–2262 (2018)

    Article  CAS  Google Scholar 

  9. J. He et al., Solar RRL 2(4), 1800004 (2018)

    Article  CAS  Google Scholar 

  10. B.A. de Carvalho, S. Kavadiya, S. Huang, D.M. Niedzwiedzki, P. Biswas, IEEE J. Photovoltaics 7(2), 532–538 (2017)

    Article  Google Scholar 

  11. T. Zhang, M. Yang, Y. Zhao, K. Zhu, Nano Lett. 15(6), 3959–3963 (2015)

    Article  CAS  Google Scholar 

  12. N. Ahn et al., J. Mater. Chem. A (2018)

  13. H. Zheng et al., Sol. Energy 159, 914–919 (2018)

    Article  CAS  Google Scholar 

  14. H.A. Abbas et al., APL Mater. 3(1), 016105 (2015)

    Article  CAS  Google Scholar 

  15. N.Y. Nia, F. Matteocci, L. Cina, A. Di Carlo, ChemSusChem 10(19), 3854–3860 (2017)

    Article  CAS  Google Scholar 

  16. C.M.M. Soe et al., Adv. Energy Mater. 8(1), 1700979 (2018)

    Article  CAS  Google Scholar 

  17. S. Tombe et al., Sol. Energy 163, 215–223 (2018)

    Article  CAS  Google Scholar 

  18. N.J. Jeon et al., Nat. Mater. 13(9), 897–903 (2014)

    Article  CAS  Google Scholar 

  19. N. Ahn et al., J. Am. Chem. Soc. 137(27), 8696–8699 (2015)

    Article  CAS  Google Scholar 

  20. N.J. Jeon et al., Nat. Mater. 13(9), 897 (2014)

    Article  CAS  Google Scholar 

  21. J.H. Heo, H.J. Han, D. Kim, T.K. Ahn, S.H. Im, Energy Environ. Sci. 8(5), 1602–1608 (2015)

    Article  CAS  Google Scholar 

  22. F. Hao et al., J. Am. Chem. Soc. 137(35), 11445–11452 (2015)

    Article  CAS  Google Scholar 

  23. J. Xiong et al., Org. Electron. 24, 106–112 (2015)

    Article  CAS  Google Scholar 

  24. C.-Y. Chang et al., ACS Appl. Mater. Interfaces 7(8), 4955–4961 (2015)

    Article  CAS  Google Scholar 

  25. W. Qiu et al., Energy Environ. Sci. 9(2), 484–489 (2016)

    Article  CAS  Google Scholar 

  26. P.W. Liang et al., Adv. Mater. 26(22), 3748–3754 (2014)

    Article  CAS  Google Scholar 

  27. H. Tsai et al., Chem. Mater. 27(16), 5570–5576 (2015)

    Article  CAS  Google Scholar 

  28. G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, H.J. Snaith, Adv. Funct. Mater. 24(1), 151–157 (2014)

    Article  CAS  Google Scholar 

  29. M. Yang et al., Nat. Energy 2(5), 17038 (2017)

    Article  CAS  Google Scholar 

  30. K. Hwang et al., Adv. Mater. 27(7), 1241–1247 (2015)

    Article  CAS  Google Scholar 

  31. K. Wojciechowski et al., ACS Nano 8(12), 12701–12709 (2014)

    Article  CAS  Google Scholar 

  32. Y. Yuan, J. Huang, Acc. Chem. Res. 49(2), 286–293 (2016)

    Article  CAS  Google Scholar 

  33. M. Alidaei, M. Izadifard, M.E. Ghazi, V. Ahmadi, Mater. Res. Express (2018)

  34. J. Qiu et al., Nanoscale 5(8), 3245–3248 (2013)

    Article  CAS  Google Scholar 

  35. F. Hao, C.C. Stoumpos, R.P. Chang, M.G. Kanatzidis, J. Am. Chem. Soc. 136(22), 8094–8099 (2014)

    Article  CAS  Google Scholar 

  36. B. Chen, M. Yang, S. Priya, K. Zhu, J. Phys. Chem. Lett. 7(5), 905–917 (2016)

    Article  CAS  Google Scholar 

  37. B. Chen et al., J. Phys. Chem. Lett. 6(23), 4693–4700 (2015)

    Article  CAS  Google Scholar 

  38. Y. Zhang et al., Mater. Horiz. 2(3), 315–322 (2015)

    Article  CAS  Google Scholar 

  39. Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Nat. Commun. 5, 5784 (2014)

    Article  CAS  Google Scholar 

  40. C.-H. Chiang, C.-G. Wu, Nat. Photonics 10(3), 196 (2016)

    Article  CAS  Google Scholar 

  41. M.B. Upama et al., Org. Electron. 50, 279–289 (2017)

    Article  CAS  Google Scholar 

  42. A. Dhass, E. Natarajan, L. Ponnusamy, in Emerging Trends in Electrical Engineering and Energy Management (ICETEEEM), 2012 International Conference on. (IEEE, 2012), pp. 382–386

  43. J.M. Ball et al., Energy Environ. Sci. 8(2), 602–609 (2015)

    Article  CAS  Google Scholar 

  44. F.A. Roghabadi, K.O. Aghmiuni, V. Ahmadi, Org. Electron. 34, 164–171 (2016)

    Article  CAS  Google Scholar 

  45. F.A. Roghabadi, M. Kokabi, V. Ahmadi, G. Abaeiani, Thin Solid Films 621, 19–25 (2017)

    Article  CAS  Google Scholar 

  46. A.C. Mayer, S.R. Scully, B.E. Hardin, M.W. Rowell, M.D. McGehee, Mater. Today 10(11), 28–33 (2007)

    Article  CAS  Google Scholar 

  47. Y. Tamai, H. Ohkita, H. Benten, S. Ito, J. Phys. Chem. Lett. 6(17), 3417–3428 (2015)

    Article  CAS  Google Scholar 

  48. S. Sun et al., Energy Environ. Sci. 7(1), 399–407 (2014)

    Article  CAS  Google Scholar 

  49. V. Arkhipov, H. Bässler, Phys. Status Solidi A 201(6), 1152–1187 (2004)

    Article  CAS  Google Scholar 

  50. F.A. Roghabadi, M. Kokabi, V. Ahmadi, G. Abaeiani, Electrochim. Acta 222, 881–887 (2016)

    Article  CAS  Google Scholar 

  51. G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270(5243), 1789–1791 (1995)

    Article  CAS  Google Scholar 

  52. R. Kokubu, Y. Yang, Phys. Chem. Chem. Phys. 14(23), 8313–8318 (2012)

    Article  CAS  Google Scholar 

  53. J.F. Wang et al., Sci. Rep. 7(1), 14478 (2017)

  54. R. Gottesman et al., Chem 1(5), 776–789 (2016)

    Article  CAS  Google Scholar 

  55. A. Shit, A.K. Nandi, Phys. Chem. Chem. Phys. 18(15), 10182–10190 (2016)

    Article  CAS  Google Scholar 

  56. Z.-L. Zhang et al., Nanoscale Res. Lett. 12(1), 43 (2017)

    Article  CAS  Google Scholar 

  57. A. Todinova et al., ChemElectroChem 4(11), 2891–2901 (2017)

    Article  CAS  Google Scholar 

  58. F. Galatopoulos, A. Savva, I.T. Papadas, S.A. Choulis, APL Mater. 5(7), 076102 (2017)

    Article  CAS  Google Scholar 

  59. Y. Liu et al., J. Mater. Chem. A 3(22), 11940–11947 (2015)

    Article  CAS  Google Scholar 

  60. B. Suarez et al., J. Phys. Chem. Lett. 5(10), 1628–1635 (2014)

    Article  CAS  Google Scholar 

  61. W. Yan et al., Nano Res. 9(6), 1600–1608 (2016)

    Article  CAS  Google Scholar 

  62. M.I. Ahmed et al., AIP Adv. 6(6), 065303 (2016)

    Article  CAS  Google Scholar 

  63. W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, Adv. Funct. Mater. 15(10), 1617–1622 (2005)

    Article  CAS  Google Scholar 

  64. A. Guerrero et al., J. Phys. Chem. C 120(15), 8023–8032 (2016)

    Article  CAS  Google Scholar 

  65. M. Ulfa, T. Pauporté, T.-T. Bui, F. Goubard, J. Phys. Chem. C (2018)

  66. J.A. Christians, R.C.M. Fung, P.V. Kamat, J. Am. Chem. Soc. 136(2), 758–764 (2014)

    Article  CAS  Google Scholar 

  67. O. Almora et al., J. Phys. Chem. Lett. 6(9), 1645–1652 (2015)

    Article  CAS  Google Scholar 

  68. N. Mohammadian, A. Moshaii, A. Alizadeh, S. Gharibzadeh, R. Mohammadpour, J. Phys. Chem. Lett. 7(22), 4614–4621 (2016)

    Article  CAS  Google Scholar 

  69. H.-S. Kim, N.-G. Park, J. Phys. Chem. Lett. 5(17), 2927–2934 (2014)

    Article  CAS  Google Scholar 

  70. D. Ouyang et al., Adv. Energy Mater. 1702722 (2018)

  71. H. Zhang et al., ACS Nano 10(1), 1503–1511 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Shahrood University of Technology. The experimental-part of the research was performed in Nano Optoelectronic Laboratory (NOPL) of the Tarbiat Modares University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Izadifard.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 702 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alidaei, M., Izadifard, M., Ghazi, M.E. et al. Interfacial defect passivation in CH3NH3PbI3 perovskite solar cells using modifying of hole transport layer. J Mater Sci: Mater Electron 30, 6936–6946 (2019). https://doi.org/10.1007/s10854-019-01009-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01009-5

Navigation