Skip to main content
Log in

Lightweight graphite membranes with excellent electromagnetic interference shielding effectiveness and thermal conductivity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electromagnetic interference (EMI) shielding and thermal management are essential in the design and fabrication of electronic device. Lightweight graphite membranes (GMs) prepared by solid-state foaming technology using polyimide film, are used as raw materials in this work. We obtain four different samples with the thickness of 120 µm, 87 µm, 60 µm and 32 µm by rolling GMs. The EMI shielding effectiveness in 30–3000 MHz and in-plane thermal conductivity of GMs vary from 65.5 to 103.4 dB and 129.3 to 964.6 W m−1 K−1, respectively. The density and electrical conductivity vary from 0.27 to 1.72 g cm−3 and 2.7 × 103–1.5 × 104 S cm−1, respectively. Reflecting and absorbing both are noticeable performances of GMs. The dominant shielding mechanism is the absorption that attributed to the closed-cell pores inside. All the membranes still are thermally stable even the temperature is up to 1000 °C. Therefore, graphite membranes are indeed a novel material combining excellent EMI shielding performance and elevated thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Shang, The Design and Test of Electromagnetic Compatibility (EMC) (Publishing House of Electronics Industry, Beijing, 2013), p. 192

    Google Scholar 

  2. B. Shen, W.T. Zhai, W.G. Zheng, Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater. 24, 4542–4548 (2014)

    Article  Google Scholar 

  3. B. Fugetsu, E. Sano, M. Sunada, Y. Sambongi, T. Shibuya, X.S. Wang, T. Hiraki, Electrical conductivity and electromagnetic interference shielding efficiency of carbon nanotube/cellulose composite paper. Carbon 46, 1256–1258 (2008)

    Article  Google Scholar 

  4. H.M. Kim, K. Kim, C.Y. Lee, J. Joo, S.J. Cho, H.S. Yoon, D.A. Pejakovic, J.W. Yoon, A.J. Epstein, Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl. Phys. Lett. 84, 589–591 (2004)

    Article  Google Scholar 

  5. N. Li, Y. Huang, F. Du, X.B. He, X. Lin, H.J. Gao, Y.F. Ma, F.F. Li, Y.S. Chen, P.C. Eklund, Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett. 6, 1141–1145 (2006)

    Article  Google Scholar 

  6. M.H. Al-Saleh, U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47, 1738–1746 (2009)

    Article  Google Scholar 

  7. J.J. Liang, Y. Huang, L. Zhang, Y. Wang, Y.F. Ma, T.Y. Guo, Y.S. Chen, Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv. Funct. Mater. 19, 2297–2302 (2009)

    Article  Google Scholar 

  8. J.M. Thomassin, C. Pagnoulle, L.L. Bednarz, I. Huynen, R. Jerome, C. Detrembleur, Foams of polycaprolactone/MWNT nanocomposites for efficient EMI reduction. J. Mater. Chem. 18, 792–796 (2008)

    Article  Google Scholar 

  9. S.Y. Yang, K. Lozano, A. Lomeli, H.D. Foltz, R. Jones, Electromagnetic interference shielding effectiveness of carbon nanofiber/LCP composites. Composites A 36, 691–697 (2005)

    Article  Google Scholar 

  10. D.D.L. Chung, Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39, 279–285 (2001)

    Article  Google Scholar 

  11. Z.F. Liu, G. Bai, Y. Huang, Y.F. Ma, F. Du, F.F. Li, T.Y. Guo, Y.S. Chen, Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon 45, 821–827 (2007)

    Article  Google Scholar 

  12. S. Geetha, K.K.S. Kumar, C.R.K. Rao, M. Vijayan, D.C. Trivedi, EMI shielding: methods and materials—a review. J. Appl. Polym. Sci. 112, 2073–2086 (2010)

    Article  Google Scholar 

  13. Y. Li, B. Shen, X.L. Pei, Y.G. Zhang, D. Yi, W.T. Zhai, L.H. Zhang, X.C. Wei, W.G. Zheng, Ultrathin carbon foams for effective electromagnetic interference shielding. Carbon 100, 375–385 (2016)

    Article  Google Scholar 

  14. Z.Y. Dou, G.H. Wu, X.L. Huang, D.L. Sun, L.T. Jiang, Electromagnetic shielding effectiveness of aluminum alloy–fly ash composites. Composites A 38, 186–191 (2007)

    Article  Google Scholar 

  15. Z.R. Jia, D. Lan, K.J. Lin, M. Qin, K.C. Kou, G.L. Wu, H.J. Wu, Progress in low-frequency microwave absorbing materials. J. Mater. Sci.: Mater. Electron. 29, 17122–17136 (2018)

    Google Scholar 

  16. J.M. Thomassin, C. Jerome, T. Pardoen, C. Bailly, I. Huynen, C. Detrembleur, Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R 74, 211–232 (2013)

    Article  Google Scholar 

  17. Z.R. Jia, Z.G. Gao, D. Lan, Y.H. Cheng, G.L. Wu, H.J. Wu, Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite. Chin. Phys. B 27, 117806–117813 (2018)

    Article  Google Scholar 

  18. Z.R. Jia, K.J. Lin, G.L. Wu, H. Xing, H.J. Wu, Recent Progresses of high-temperature microwave-absorbing materials. Nano 13, 1830005–1830027 (2018)

    Article  Google Scholar 

  19. H.J. Wu, S.H. Qu, K.J. Lin, Y.H. Qing, L.D. Wang, Y.C. Fan, Q.H. Fu, F.L. Zhang, Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite. Powder Technol. 333, 153–159 (2018)

    Article  Google Scholar 

  20. M. Inagaki, N. Ohta, Y. Hishiyama, Aromatic polyimides as carbon precursors. Carbon 61, 1–21 (2013)

    Article  Google Scholar 

  21. Z.C. Tao, H.B. Wang, P.F. Lian, J.P. Zhang, Z.J. Liu, Q.G. Guo, L. Liu, “Graphitic bubbles” derived from polyimide film. Carbon 116, 733–736 (2017)

    Article  Google Scholar 

  22. M.H. Al-Saleh, G.A. Gelves, U. Sundararaj, Copper nanowire/polystyrene nanocomposites: lower percolation threshold and higher EMI shielding. Composites A 42, 92–97 (2011)

    Article  Google Scholar 

  23. G.A. Gelves, M.H. Al-Saleh, U. Sundararaj, Highly electrically conductive and high performance EMI shielding nanowire/polymer nanocomposites by miscible mixing and precipitation. J. Mater. Chem. 21, 829–836 (2010)

    Article  Google Scholar 

  24. F.Q. Zhang, Q.Z. Huang, B.Y. Huang, Q.M. Gong, T.F. Chen, Effects of graphitization dergee on the electrical conductivity of C/C composites. New Carbon Mater. 16, 45–48 (2001)

    Google Scholar 

  25. B. Shen, Y. Li, D. Yi, W.T. Zhai, X.C. Wei, W.G. Zheng, Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon 102, 154–160 (2016)

    Article  Google Scholar 

  26. N.C. Das, Y.Y. Liu, K.K. Yang, W.Q. Peng, S. Maiti, H. Wang, Single-walled carbon nanotube/poly(methyl methacrylate) composites for electromagnetic interference shielding. Polym. Eng. Sci. 49, 1627–1634 (2009)

    Article  Google Scholar 

  27. H.N. Zhang, A.N. Li, J. Wang, Y. Zhang, Z. Zhao, H.F. Zhao, M. Cheng, C.W. Wang, J.Y. Wang, S.C. Zhang, J.Z. Wang, Graphene integrating carbon fiber and hierarchical porous carbon formed robust flexible “carbon-concrete” supercapacitor film. Carbon 126, 500–506 (2018)

    Article  Google Scholar 

  28. X. Luo, D.D.L. Chung, Electromagnetic interference shielding reaching 130 dB using flexible graphite. Carbon 49, 773–778 (2011)

    Article  Google Scholar 

  29. H. Malekpour, K.H. Chang, J.C. Chen, C.Y. Lu, D.L. Nika, K.S. Novoselov, A.A. Balandin, Thermal conductivity of graphene laminate. Nano Lett. 14, 5155–5161 (2014)

    Article  Google Scholar 

  30. Y. Zhang, M. Edwards, M.K. Samani, N. Logothetis, L.L. Ye, Y.F. Fu, K. Jeppson, J. Liu, Characterization and simulation of liquid phase exfoliated graphene-based films for heat spreading applications. Carbon 106, 195–201 (2016)

    Article  Google Scholar 

  31. Q.Z. Liang, X.X. Yao, W. Wang, Y. Liu, C.P. Wong, A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials. ACS Nano 5, 2392–2401 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to sincerely acknowledge the financial support of the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2017205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Jiang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, B., Tao, Z., Liu, Z. et al. Lightweight graphite membranes with excellent electromagnetic interference shielding effectiveness and thermal conductivity. J Mater Sci: Mater Electron 30, 6734–6744 (2019). https://doi.org/10.1007/s10854-019-00985-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00985-y

Navigation