Skip to main content
Log in

Anisotropy thermoelectric and mechanical property of polycrystalline SnSe prepared under different processes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the polycrystalline SnSe bulk samples were prepared by the spark plasma sintering (SPS) using the SnSe powders, which were synthesized by the hydrothermal reaction (HR) or the melting reaction (MR), respectively. X-ray diffraction (XRD) patterns reveal strong orientation along the [l00] direction for both wafer samples, but there is obvious different micro-morphologies in the powder and the bulk fracture as shown in scanning electron microscopy (SEM) images. The zigzag type texturing characteristic appears in the entire interior of the bulk sample prepared by the process (HR + SPS), while random arrangement occurs in interior of another bulk sample prepared by the process (MR + SPS).The formation mechanism of the zigzag type texturing come mainly from control of initial powders morphology and pressing into pre-pressed blocks by layers. The special zigzag type texturing characteristic improve the thermoelectric properties of samples, and the highest ZT value (~ 0.67) at 773 K were found in the SnSe bulk sample prepared by the process (HR + SPS) in the direction parallel to the pressing axis. The thermoelectric compatibility factor of samples prepared by the process (HR + SPS) are less than 2 at 773 K. The fracture toughness in the plane that vertical or parallel to the pressing direction was calculated to be 4.0 MPam1/2 and 4.2 MPam1/2, respectively. The proper thermoelectric compatibility factor and fracture toughness make the SnSe system better application prospect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X. Li, S. Li, B. Yang, S.K. Feng, H. Zhong, Microstructure and thermoelectric properties of un-doped Mg2Si1 – xSnx single crystals prepared by high temperature gradient directional solidification. J. Mater. Sci. 29(8), 6245–6253 (2018)

    Google Scholar 

  2. H.Q. Liu, Z.J. Yu, Y.J. Gu, Y.B. Chen, Effect of micro-structure on electrical transport properties in Ca3Co4O9 ceramics. Rare Met. 30, 77–80 (2011)

    Article  Google Scholar 

  3. S. Roychowdhury, M.K. Jana, J. Pan, S.N. Guin, D. Sanyal, U.V. Waghmare, K. Biswas, Soft phonon modes leading to ultralow thermal conductivity and high thermoelectric performance in AgCuTe. Angew. Chem. 57(15), 4043–4047 (2018)

    Article  Google Scholar 

  4. H.Q. Liu, X.B. Zhao, T.J. Zhu, Y.J. Gu, Enhanced thermoelectric properties of Co1 – x–yNix+y Sb3 – xSnx materials. Int. J. Miner., Metall. Mater. 19, 240–244 (2012)

    Article  Google Scholar 

  5. X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu, Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl. Phys. Lett. 86(6), 062111 (2005)

    Article  Google Scholar 

  6. K. Biswas, J.Q. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012)

    Article  Google Scholar 

  7. I. Lefebvre, M.A. Szymanski, J. Olivier-Fourcade, J.C. Jumas, Electronic structure of tin monochalcogenides from SnO to SnTe. Phys. Rev. B 58(4), 1896–1906 (1998)

    Article  Google Scholar 

  8. G.D. Li, U. Aydemir, M. Wood, W.A. Goddard, P.C. Zhai, Q.J. Zhang, G.J. Snyder, Ideal strength and deformation mechanism in high-efficiency thermoelectric SnSe. Chem. Mater. 29, 2382–2389 (2017)

    Article  Google Scholar 

  9. L.D. Zhao, S. Lo, Y. Zhang, H. Sun, G.J. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–377 (2014)

    Article  Google Scholar 

  10. L.D. Zhao, G. Tan, S. Hao et al., Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 351(6269), 141–144 (2016)

    Article  Google Scholar 

  11. C. Chen, H. Wang, Y. Chen, T. Day, G.J. Snyder, Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. J. Mater. Chem. A 2, 11171–11176 (2014)

    Article  Google Scholar 

  12. Y.X. Chen, Z. Ge, M. Yin et al., Understanding of the extremely low thermal conductivity in high-performance polycrystalline SnSe through potassium doping. Adv. Func. Mater. 26, 6836–6845 (2016)

    Article  Google Scholar 

  13. Y. Fu, J. Xu, G.Q. Liu, Enhanced thermoelectric performance in p-type polycrystalline SnSe benefiting from texture modulation. J. Mater. Chem. C 4, 1201–1207 (2016)

    Article  Google Scholar 

  14. G.D. Tang, Q. Wen, T. Yang, Rock-salt-type nano-precipitates lead to high thermoelectric performance in undoped polycrystalline SnSe. RSC Adv. 7, 8258–8263 (2017)

    Article  Google Scholar 

  15. Z.H. Ge, D. Song, X. Chong, F. Zheng, L. Jin, X. Qian, Boosting the thermoelectric performance of (Na,K)-codoped polycrystalline SnSe by synergistic tailoring of the band structure and atomic-scale defect phonon scattering.J. Am. Chem. Soc. 139 (28), 9714–9720 (2017)

    Article  Google Scholar 

  16. Z.J. Xu, L.P. Hu, P.J. Ying, X.B. Zhao, T.J. Zhu, Enhanced thermoelectric and mechanical properties of zone melted p-type (Bi,Sb) 2 Te 3 thermoelectric materials by hot deformation. Acta Mater. 84, 385–392 (2015)

    Article  Google Scholar 

  17. Z. Liu, W. Gao, X. Meng, X. Li, J. Mao, Y. Wang, J. Shuai, W. Cai, Z. Ren, J. Sui, Mechanical properties of nanostructured thermoelectric materials α-MgAgSb. Scr. Mater. 127, 72–75 (2017)

    Article  Google Scholar 

  18. F. Chu, Q. Zhang, Z. Zhou, D. Hou, L. Wang, W. Jiang, Enhanced thermoelectric and mechanical properties of Na-doped polycrystalline SnSe thermoelectric materials via CNTs dispersion. J. Alloys Compd. 741, 756–764 (2018)

    Article  Google Scholar 

  19. J. Fu, X. Su, H. Xie, Y. Yan, W. Liu, Y. You, X. Cheng, C. Uher, X.F. Tang, Understanding the combustion process for the synthesis of mechanically robust SnSe thermoelectrics. Nano Energy 44, 53–62 (2018)

    Article  Google Scholar 

  20. G.J. Snyder, T. Ursell, Thermoelectric efficiency and compatibility. Phys. Rev. Lett. 91, 148301 (2003)

    Article  Google Scholar 

  21. G.J. Snyder, Application of the compatibility factor to the design of segmented and cascaded thermoelectric generators. Appl. Phys. Lett. 84(13), 2436–2438 (2004)

    Article  Google Scholar 

  22. Z.Y. Chu, H.Q. Liu, C.H. Yuan, Y.Q. Wang, W.J. Wang, H.Z. Cui, Y.J. Gu, Textured SnSe micro-sheets: One-pot facile synthesis and comprehensive understanding on the growth mechanism. J Mater Chem Phys. 199, 464–470 (2017)

    Article  Google Scholar 

  23. Y. Li, F. Li, J. Dong, Z. Ge, F. Kang, J. He, H. Du, B. Li, J.F. Li, Enhanced mid-temperature thermoelectric performance of textured SnSe polycrystals made of solvothermally synthesized powders. J. Mater. Chem. C 4, 2047–2055 (2016)

    Article  Google Scholar 

  24. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)

    Article  Google Scholar 

  25. J. Zhou, X.B. Li, G. Chen et al., Semiclassical model for thermoelectric transport in nanocomposites. Phys. Rev. B, 82, 115308 (2010)

    Article  Google Scholar 

  26. E.K. Chere, Q. Zhang, K. Dahal, F. Cao, J. Mao, Z.F. Ren, Studies on thermoelectric figure of merit of Na-doped p-type polycrystalline SnSe. J. Mater. Chem. A. 4, 1848–1854 (2016)

    Article  Google Scholar 

  27. S. Sassi, C. Candolfi, J.B. Vaney, V. Ohorodniichuk, P. Masschelein, A. Dauscher, B. Lenoir, Assessment of the thermoelectric performance of polycrystalline p-type SnSe. Appl. Phys. Lett. 104(21), 1–4 (2014)

    Article  Google Scholar 

  28. J. Ding, B. Xu, Y. Lin, C. Nan, W. Liu, Lattice vibration modes of the layered material BiCuSeO and first principles study of its thermoelectric properties. New J. Phys. 17, 083012 (2015)

    Article  Google Scholar 

  29. A. Soni, Y.Q. Shen, M. Yin et al. Interface driven energy filtering of thermoelectric power in spark plasma sintered Bi2Te2.7Se0.3 nanoplatelet composites. Nano Lett. 12 (8), 4305–4310 (2012)

    Article  Google Scholar 

  30. P.H. Ngan, D.V. Christensen, G.J. Snyder, L.T. Hung, S. Linderoth, N.V. Nong, N. Pryds, Towards high efficiency segmented thermoelectric unicouples. Phys. Status Solidi A 211(1), 9–17 (2014)

    Article  Google Scholar 

  31. G. Anstis, P. Chantikul, B.R. Lawn, D. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J. Am. Ceram. Soc. 64(9), 533–538 (1981)

    Article  Google Scholar 

  32. X. He, H. Shen, W. Wang, Z. Wang, B. Zhang, X. Li, The mechanical and thermo-physical properties and electronic structures of SnS and SnSe in orthorhombic structure. J. Alloys Compd. 556, 86–93 (2013)

    Article  Google Scholar 

  33. K. Tyagi, B. Gahtori, S.B. Thula, N.K. Singh, S. Bishnoi, S. Auluck, A.K. Srivastava, A. Dhar, Electrical transport and mechanical properties of thermoelectric tin selenide. RSC Adv. 6(14), 11562–11569 (2016)

    Article  Google Scholar 

  34. F. Ren, B.D. Hall, J.E. Ni, E.D. Case, J. Sootsman, M.G. Kanatzidis, E. Lara-Curzio, R.M. Trejo, E.J. Timm, Mechanical characterization of PbTe-based thermoelectric materials. MRS Proc. 1044, (2007)

  35. L.D. Zhao, B.P. Zhang, J.F. Li, M. Zhou, W.S. Liu, J. Liu, Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. J. Alloys Compd. 455(1–2), 259–264 (2008)

    Article  Google Scholar 

  36. P.F. Becher, Microstructural design of toughened ceramics. J. Am. Ceram. Soc. 74, 255–269 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial supports from Tai-shan scholarship of climbing plan, No.tspd20161006, Shandong Natural Science Foundation Project (Grant No. ZR2015EM013), and a Project of Shandong Province Higher Educational Science and Technology Program (Grant No. YA07), and Shandong University of Science and Technology Research Fund (No. SDKDYC180370).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongquan Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Liu, H., Chen, R. et al. Anisotropy thermoelectric and mechanical property of polycrystalline SnSe prepared under different processes. J Mater Sci: Mater Electron 30, 6403–6410 (2019). https://doi.org/10.1007/s10854-019-00943-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00943-8

Navigation