Advertisement

Structural, electrical and dielectric studies on (1 − x)MgTiO3 − x Ba0.5Sr0.5TiO3 composite ceramics for type-II capacitor applications

  • Susmita Rabha
  • Pamu DobbidiEmail author
Review
  • 68 Downloads

Abstract

The structural, microstructural, electrical and broadband dielectric properties of (1 − x)MgTiO3 − xBa0.5Sr0.5TiO3 (for x = 0.1 to 0.5) composite ceramics has been reported. Conventional solid state reaction method is followed for preparation of the powder and maximum densification is optimized at different sintering temperatures (1250 to 1400 °C). The structural studies revealed presence of both MTO and BST phases independently. The cryogenic dielectric response was studied over a broadband frequency range. The composite ceramics have exhibited diffused transition as a typical signature of relaxor ferroelectrics with temperature. Modified Curie–Weiss law is implemented and calculated the diffuseness constant to probe the relaxor behavior of the ceramics. The Impedance analysis in complex plane showed non-Debye type relaxation behavior. Correlated barrier hopping mechanism is found to be responsible for conduction process at higher frequency region in AC-conductivity analysis. The thermal stability of capacitance over the temperature range of (RT) − 30 to + 85 °C determined and found to be ~ − 54%. The 0.7 MTO—0.3 BST ceramic composite sintered at a temperature (Ts) of 1350 °C is optimized as the best composition with the highest values of relative density (~ 97%), high dielectric permittivity εr ~ 57 and quality factor, Q × f0 = 19,30 GHz at 4.16 GHz. The obtained properties of the composite ceramics is promising for type -II capacitors in integrated circuits of de-couplers and filters.

Notes

Acknowledgements

The authors acknowledge the financial support and facilities provided by DAE BRNS [37 (1)/14/33/2015/BRNS].The authors acknowledge Central Instruments facility, IIT Guwahati, for providing Raman Spectroscopy, FESEM and RF Impedance analyzer system. The authors also acknowledge, Centre for Nanotechnology, IIT Guwahati, for FESEM images.SR would like to acknowledge Gohonzon and family for constant support throughout the work.

References

  1. 1.
    A.K. Tagantsev, et al., J. Electroceram. 1, 5 (2003)CrossRefGoogle Scholar
  2. 2.
    L.C. Sengupta, S. Sengupta, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 792 (1997)CrossRefGoogle Scholar
  3. 3.
    V.O. Sherman, J. Appl. Phys. 99, 074104 (2006)CrossRefGoogle Scholar
  4. 4.
  5. 5.
  6. 6.
    T. Santhosh Kumar, et. al., Mater. Sci. Eng. B 194, 86–93 (2015)CrossRefGoogle Scholar
  7. 7.
    S.S. Gevorgian, E.L. Kollgerg, IEEE Trans. Microwave Theory Tech. 49, 2117 (2001)CrossRefGoogle Scholar
  8. 8.
    L.C. Sengupta, S. Sengupta, Mater. Res. Innov. 2, 2278 (1999)CrossRefGoogle Scholar
  9. 9.
    B. Su, T.W. Button, J. Appl. Phys. 95, 1382 (2004)CrossRefGoogle Scholar
  10. 10.
    S. Ke, H. Fan, et al., Compos. Part A 39, 597 (2008)CrossRefGoogle Scholar
  11. 11.
    A.R. West, et al., J. Electroceram. 1, 65 (1997)CrossRefGoogle Scholar
  12. 12.
    B.W. Hakki, P.D. Coleman, IEEE Trans. Microwave Theory Technol 8, 402 (1960)CrossRefGoogle Scholar
  13. 13.
    W.E. Courtney, IEEE Trans. Microwave Theory Technol. 18, 476 (1970)CrossRefGoogle Scholar
  14. 14.
    M.T. Sebastian, Dielectric Materials for Wireless Communications (Elsevier Science Ltd, Netherlands, 2008)Google Scholar
  15. 15.
    Birkbeck College, University of London. http://pd.chem.ucl.ac.uk/pdnn/peaks/size.htm
  16. 16.
    V.D. Mote, Journal of Theoretical and Applied Physics 6[1], 6 (2012)Google Scholar
  17. 17.
    W. Chun-Hai, et al., J. Appl. Phys. 104, 034112 (2008)CrossRefGoogle Scholar
  18. 18.
    J. Zhang, et al., J. Appl. Phys. 104, 084102 (2008)CrossRefGoogle Scholar
  19. 19.
    B. Reynard, F. Guyot, Phys. J. Chem. Miner. 21, 441 (1994)Google Scholar
  20. 20.
    D.C. Harris, M.D. Bertolucci, Symmetry and Spectroscopy: An Introduction to vibrational and Electronic Spectroscopy (Oxford University Press, New York, 1978), pp. 170–173Google Scholar
  21. 21.
    M. Osada, et al., J. Appl. Phys. Lett. 75, 3393 (1999)CrossRefGoogle Scholar
  22. 22.
    H. Zheng et al., J. Eur. Ceram. Soc. 23, 2653 (2003)CrossRefGoogle Scholar
  23. 23.
    Z. Cheng, et al., Phys. Rev. B 77, 092101 (2003)CrossRefGoogle Scholar
  24. 24.
    J. Sun, X. Chou, et al., Ferroelectrics 356, 128 (2009)CrossRefGoogle Scholar
  25. 25.
    L. Eric Cross, Ferroelectrics 151, 305 (1994)CrossRefGoogle Scholar
  26. 26.
    L. Eric Cross, Ferroelectrics 76, 241 (1987)CrossRefGoogle Scholar
  27. 27.
    V.V. Shvartsman, D.C. Lupascu, J. Am. Ceram. Soc. 95(1), 1 (2012)CrossRefGoogle Scholar
  28. 28.
    K. Uchino, S. Nomura, Ferroelectrics 44, 55 (1982)Google Scholar
  29. 29.
    W. Li, K. Chen, et. al, Appl. Phys. Lett. 85, 4717 (2004)CrossRefGoogle Scholar
  30. 30.
    K. Kumar, B. Kumar, J. Ceram. Int. 38, 1157 (2012)CrossRefGoogle Scholar
  31. 31.
    Ming-Dimg et.al, J. Mater. (2018)Google Scholar
  32. 32.
    G. Singh, et al., J. Appl. Phys. 107, 064103 (2012)CrossRefGoogle Scholar
  33. 33.
    H. Liu, et. al, Nat. Mater. 11, 422 (2012)CrossRefGoogle Scholar
  34. 34.
    B. Tiwari, R.N.P. Choudhary, J. Alloys Compd. 493, 1 (2009)sCrossRefGoogle Scholar
  35. 35.
    B. Tiwari, R.N.P. Choudhary, IEEE Trans. Dielectr. Electr. Insul. 17, 5 (2010)CrossRefGoogle Scholar
  36. 36.
    T.F. Zhang, et al., AIP Adv. 4, 107141 (2014)CrossRefGoogle Scholar
  37. 37.
    D.P. Almond et al., Solid State Ionics 8 (2), 159 (1983)CrossRefGoogle Scholar
  38. 38.
    A.K. Jonscher, J. Mater. Sci. 13, 553 (1978)CrossRefGoogle Scholar
  39. 39.
    J.M. Le Meins, Solid State Ionics 111, 67 (1998)CrossRefGoogle Scholar
  40. 40.
    S.H. Chung et. al, Phys. Rev. B 41, 6154 (1990)CrossRefGoogle Scholar
  41. 41.
    A.K. Joncher, J. Mater. Sci. 16, 2037 (1981)CrossRefGoogle Scholar
  42. 42.
    R. Dridi et. al, J. Alloys Compd. 634, 179 (2015)CrossRefGoogle Scholar
  43. 43.
    A.A. Youssef Ahmed, Z. Naturforsch. 57, 263 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Indian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations