Abstract
The core-shell g-C3N4@Zn0.5Cd0.5S heterojunction photocatalysts with excellent photocatalytic performance were synthesized via a simple co-precipitation hydrothermal method. The photocatalytic performance of the g-C3N4@Zn0.5Cd0.5S was significantly increased by the heterojunction structure, which improved the separation and mobility of the photogenerated carriers. The highest degradation efficiency was for the 50% g-C3N4@Zn0.5Cd0.5S (99%), and its degradation rate was 15.7 which was 3.7 times those of the pure g-C3N4 and Zn0.5Cd0.5S, respectively. The catalyst band gap gradually decreased with the increasing content of g-C3N4. The capture agent experiments revealed that the main active substances in the degradation process are h+ and O2−·. The photocatalytic activity remained at 95% after 4 cycles showing good light stabilities. This study provided a simple method for synthesizing the g-C3N4/ZnCdS heterojunctions with an excellent photocatalytic property.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
J. Chen, B.B. Ding, T.Y. Wang, F. Li, Y. Zhang, Y.L. Zhao, H.S. Qian, J. Mater. Sci. 25, 4103–4109 (2014)
J. Yan, K. Wang, H. Xu, J. Qian, W. Liu, X. Yang, H. Li, Chin. J. Catal. 34, 1876–1882 (2013)
L. Li, S. Xue, P. Xie, H. Feng, X. Hou, Z. Liu, R. Zou, Electron. Mater. Lett. 14, 739–748 (2018)
D. Zewde, O.P. Yadav, A.M. Taddesse, Curr. Phys. Chem. 7, 172–180 (2017)
C. Zhang, H. Liu, W. Wang, H. Qian, S. Cheng, Y. Wang, Y. Hu, Appl. Catal. B 239, 309–316 (2018)
A.G. Kyazym-zade, M.A. Jafarov, E.F. Nasirov, C.A. Jahangirova, R.S. Jafarli, Semiconductors 51, 454–457 (2017)
H.F. Ye, R. Shi, X. Yang, W.F. Fu, Y. Chen, Appl. Catal. B 233, 70–79 (2018)
M. Askari, N. Soltani, E. Saion, W.M.M. Yunus, H.M. Erfani, M. Dorostkar, Superlattices Microstruct. 81, 193–201 (2015)
W. Wang, W. Zhu, H. Xu, J. Phys. Chem. C 112, 16754–16758 (2008)
J. Zhang, W.N. Wang, M.L. Zhao, C.Y. Zhang, C.X. Huang, S. Cheng, H.S. Qian, Langmuir. 34, 9264–9271 (2018)
W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Chem. Rev. 116(12), 7159–7329 (2016)
L. Yang, J. Huang, L. Shi, L. Cao, Q. Yu, Y. Jie, J. Ye, Appl. Catal. B 204, 335–345 (2017)
F. Wang, P. Chen, Y. Feng, Z. Xie, Y. Liu, Y. Su, G. Liu, Appl. Catal. B 207, 103–113 (2017)
Z. Li, Q. Zhang, X. He, M. Chen, Appl. Clay. Sci. 151, 201–210 (2018)
H. Wu, Y. Yao, W. Li, L. Zhu, N. Ni, X. Zhang, Mol. Microbiol. Biotechnol. 13, 2225–2234 (2011)
H. Xu, L. Wu, L. Jin, K. Wu, J. Mater. Sci. Technol. 33, 30–38 (2017)
Q. Wang, Y. Shi, Z. Du, J. He, J. Zhong, L. Zhao, B. Su, Eur. J. Inorg. Chem. 2015, 4108–4115 (2015)
D. Li, Z. Wu, C. Xing, D. Jiang, M. Chen, W. Shi, S. Yuan, J. Mol. Catal. A 395, 261–268 (2014)
Y.X. Dong, J.T. Cao, B. Wang, S.H. Ma, Y.M. Liu, ACS Appl. Mater. Interface 10, 3723–3731 (2018)
L.C. Wu, H.Y. Xu, H. Zhao, Appl. Mech. Mater. 618, 215–219 (2014)
J.Y. Zhang, Y.H. Wang, J. Jin, J. Zhang, Z. Lin, F. Huang, J. Yu, ACS Appl. Mater. Interface 5, 10317–11032 (2013)
U. Mizutani, MRS Bull. 37, 169–169 (2012)
R.G. Chaudhuri, A. Chaturvedi, E. Iype, Mater. Res. Express. 5, 036202 (2018)
Y. Deng, L. Tang, G. Zeng, Z. Zhu, M. Yan, Y. Zhou, J. Wang, Appl. Catal. B 203, 343–354 (2017)
J. Wen, J. Xie, X. Chen, X. Li, Appl. Surf. Sci. 391, 72–123 (2017)
W.K. Jo, N.C.S. Selvam, Chem. Eng. J. 317, 913–924 (2017)
Z. Qian, H. Shaozheng, L. Fayun, F. Zhiping, W. Qiong, W. Fei, L. Daosheng, Chem. J. Chin. U. 37, 521–528 (2016)
B. Xue, H.Y. Jiang, T. Sun, F. Mao, Catal. Lett. 146, 2185–2192 (2016)
J. Feng, T. Chen, S. Liu, Q. Zhou, Y. Ren, Y. Lv, Z.J. Fan, J. Colloid Interface Sci. 479, 1–6 (2016)
Y.G. Li, X.L. Wei, H.J. Li, R.R. Wang, J. Feng, H. Yun, A.N. Zhou, RSC Adv. 5(1), 14074–14080 (2015)
H. Li, J. Li, C. Xu, P. Yang, D.H. Ng, P. Song, M. Zuo, J. Alloys Compd. 698, 852–862 (2017)
X. Liu, W. Yang, C. Yu, H. Zhang, J. Environ. Chem. Eng. 6(4), 4899–4907 (2018)
X. Liang, P. Wang, M. Li, Q. Zhang, Z. Wang, Y. Dai, B. Huang, Appl. Catal. B 220, 356–361 (2018)
X. Liu, P. Lv, G. Yao, C. Ma, Y. Tang, Y. Wu, Y. Yan, Colloids Surf. A 441, 420–426 (2014)
W. Wang, S. Li, C. Pan, S. Liu, T. Luo, G. Dai, J. Chin. Chem. Soc. 65, 252–258 (2018)
Y. Bai, L. Ye, T. Chen, L. Wang, X. Shi, X. Zhang, D. Chen, ACS Appl. Mater. Interface 8, 27661–27668 (2016)
Q. Nie, Q. Yuan, Q. Wang, Z. Xu, J. Mater. Sci. Lett. 39, 5611–5612 (2004)
Q. Liu, C. Fan, H. Tang, X. Sun, J. Yang, X. Cheng, Appl. Surf. Sci. 358, 188–195 (2015)
X.H. Yang, H.T. Fu, X.Z. An, X.C. Jiang, A.B. Yu, RSC Adv. 6, 34103–34109 (2016)
J. Cao, B. Luo, H. Lin, B. Xu, S. Chen, J. Hazard. Mater. 217, 107–115 (2012)
C. Zhang, Y. Lu, Q. Jiang, J. Hu, Nanotechnology. 27, 355402 (2016)
M. Sun, T. Yan, Q. Yan, H. Liu, L. Yan, Y. Zhang, B. Du, RSC Adv. 4, 19980–19986 (2014)
F. Jiang, T. Yan, H. Chen, A. Sun, C. Xu, X. Wang, Appl. Surf. Sci. 295, 164–172 (2014)
Y. Xu, W.D. Zhang, Eur. J. Inorg. Chem. 2015, 1744–1751 (2015)
Y. Sun, J. Jiang, Y. Cao, Y. Liu, S. Wu, J. Zou, Mater. Lett. 212, 288–291 (2018)
L. Zhang, F. Huang, C. Liang, L. Zhou, X. Zhang, Q. Pang, J. Taiwan Inst. Chem. Eng. 60, 643–650 (2016)
D. Peng, H. Wang, K. Yu, Y. Chang, X. Ma, S. Dong, RSC Adv. 6, 77760–77767 (2016)
D. Wang, Z. Xu, Q. Luo, X. Li, J. An, R. Yin, C. Bao, J. Mater. Sci. Lett. 51, 893–902 (2016)
X. Hao, Z. Jin, S. Min, G. Lu, RSC Adv. 6, 23709–23717 (2016)
Z.L. Fang, H.F. Rong, L.Y. Zhou, P. Qi, J. Mater. Sci. 50, 3057–3064 (2015)
L. Shi, F. Wang, J. Zhang, J. Sun, Ceram. Int. 42, 18116–18123 (2016)
L. Shi, J. Ma, L. Yao, L.S. Cui, W. Qi, J Colloid Interface Sci. 519, 1–10 (2018)
Acknowledgements
The project was supported by National Youth Fund Project of China (Grant No. 51404083).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Qi, S., Wang, D., Zhao, Y. et al. Core–shell g-C3N4@Zn0.5Cd0.5S heterojunction photocatalysts with high photocatalytic activity for the degradation of organic dyes. J Mater Sci: Mater Electron 30, 5284–5296 (2019). https://doi.org/10.1007/s10854-019-00828-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-019-00828-w