Skip to main content
Log in

Modifications in structure, surface morphology, optical and electrical properties of ZnO thin films with low boron doping

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Boron doped zinc oxide (ZnO:B) thin films with low B concentration, varied between 0.50 and 1.50 atomic percentages (at%) are prepared at substrate temperatures (TS) between 300 and 450 °C using spray pyrolysis technique. Polycrystalline wurtzite structure is observed in the X-ray diffraction patterns of ZnO:B thin films, where (002) is the predominant peak. Texture coefficient corresponding to (002) peak increases with B concentration from 0.50 to 1.00 at%. Crystallite size is found between 22 and 64 nm. Nanofibrous surface morphology is observed in the field emission scanning electron microscopic images of ZnO:B thin films. The average nanofiber thickness value varies from 198 to 498 nm. Atomic force microscopic images show the nanotip-like topology of ZnO:B thin films. The average surface roughnesses of the films are found in the range of 2.99–12.45 nm. ZnO:B thin films are found to be highly transparent between visible to near infrared region of the electromagnetic spectrum. The highest transmittance of 87% is noticed for the 1.00 at% ZnO:B thin film prepared at the TS of 450 °C. Optical band gaps of ZnO:B thin films vary between 3.15 and 3.31 eV. 1.00 at% ZnO:B thin films prepared at various TS show lower values of the band gap, refractive index and extinction coefficient at the photon wavelength of 750 nm. Electrical resistivity of ZnO:B thin films are found to be between 0.25 × 104 and 1.39 × 104 Ω m. 1.00 at% ZnO:B thin films prepared at various TS show less electrical resistivity. Arrhenius plots of ZnO:B thin films prepared at various TS show two conduction regions and activation energies of ZnO:B thin films are higher for the films deposited at lower TS. ZnO:B thin films show n-type conductivity and carrier concentration increases with the increase of B concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Kerli, U. Alver, A. Tanrıverdi, B. Avar, Crystallogr. Rep. 61(6), 946 (2015)

    Article  Google Scholar 

  2. R.S. Gaikwad, S.S. Bhande, R.S. Mane, B.N. Pawar, S.L. Gaikwad, S.H. Han, O.S. Joo, Mater. Res. Bull. 47, 4257 (2012)

    Article  Google Scholar 

  3. C.C. Yu, Y.T. Hsu, S.Y. Lee, W.H. Lan, H.H. Kuo, M.C. Shih, D.J.Y. Feng, K.F. Huang, Jpn. J. Appl. Phys. 52, 065501–065502 (2013)

    Article  Google Scholar 

  4. C.G. Janotti, Van de Walle, Rep. Prog. Phys. 72, 12650–12651 (2009)

    Article  Google Scholar 

  5. R. Wang, A.W. Sleight, D. Cleary, Chem. Mater. 8, 433 (1996)

    Article  Google Scholar 

  6. K.S. Kim, T.S. Lee, J.H. Lee, B.K. Jeong, Y.J. Cheong, W.M. Baik, Kim, J. Appl. Phys. 100, 063701 (2006)

    Article  Google Scholar 

  7. M. Caglar, S. Ilican, Y. Caglar, F. Yakuphanoglu, J. Mater. Sci. Mater. Electron. 19, 704–708 (2008)

    Article  Google Scholar 

  8. M.V. Castro, C.J. Tavares, Thin Solid Films 586, 13 (2015)

    Article  Google Scholar 

  9. Y. Zhang, Inorg. Chem. 21(11), 3889 (1982)

    Article  Google Scholar 

  10. R.B.H. Tahar, N.B.H. Tahar, J. Mater. Sci. 40, 5285 (2005)

    Article  Google Scholar 

  11. B. Olofinjana, U.S. Mbamara, O. Ajayi, C.L. Martin, E.I. Obiajuuwa, E.O.B. Ajayi, Friction 5, 402 (2017)

    Article  Google Scholar 

  12. W. Bin, L.I.U. Chaoqian, F.E.I. Weidong, W. Hualin, L.I.U. Shimin, W. Nan, C. Weiping, Chem. Res. Chin. Univ. 30(3), 509 (2014)

    Article  Google Scholar 

  13. N.P. Poddar, S.K. Mukherjee, J. Mater. Sci. Mater. Electron. (2018) https://doi.org/10.1007/s10854-018-0320-6

    Google Scholar 

  14. N.L. Tarwal, V.V. Shinde, A.S. Kamble, P.R. Jadhav, D.S. Patil, V.B. Patil, P.S. Patil, Appl. Surf. Sci. 257, 10789 (2011)

    Article  Google Scholar 

  15. R. Ayouchi, F. Martin, D. Leinen, J.R.R. Barrado, J. Cryst. Growth 247, 497 (2003)

    Article  Google Scholar 

  16. Y. Larbah, M. Adnane, T. Sahraoui, Mater Sci. Poland. 33, 491 (2015)

    Article  Google Scholar 

  17. S. olansky, Multiple beam interferometry of surfaces and films (Oxford Clarendon Press, London, 1948)

    Google Scholar 

  18. C. Barret, T.B. Massalski, Structure of metals (Oxford, Pergamon, 1980)

    Google Scholar 

  19. C. Kittel, Introduction to solid state physics (Wiley, New York, 1976)

    Google Scholar 

  20. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgensrahlen (Springer, Berlin, 1918)

    Google Scholar 

  21. Y. Zhao, J. Zhang, J. Appl. Cryst. 41, 1095 (2008)

    Article  Google Scholar 

  22. G.K. Williamson, R.E. Smallman, Philos. Mag. 1(1), 34 (1956)

    Article  Google Scholar 

  23. A.D. Sathe, E.S. Kim, Proceeding the 7th international conference on solid state sensors and actuators transducers, Yokohoma, Japan, 158 (1993)

  24. H. Landolt, R. Börnstein, Landolt-Börnstein: numerical data and functional relationships in science and technology, vol. 2 (Springer, Berlin, 1946)

    Google Scholar 

  25. J.D. Hanawalt, H.W. Rinn, L.K. Frevel, Ind. Eng. Chem. Anal. Ed. 10(9), 457 (1938)

    Article  Google Scholar 

  26. R.E. Hummel, Electronic properties of materials, 3rd edn. (Springer, New York, 2000)

    Google Scholar 

  27. E.A. Davies, N.F. Mott, Philos. Mag. 22, 903 (1970)

    Article  Google Scholar 

  28. W.D. Callister Jr., Fundamentals of materials science and engineering, 5th edn. (Wiley, New York, 2001)

    Google Scholar 

  29. L.L. Kazmerski, Polycrystalline and amorphous thin films and devices (Academic Press, New York, 1980)

    Google Scholar 

  30. F. Zahedi, R.S. Dariani, S.M. Rozati, Mat. Sci. Semicon. Proc. 16, 245–249 (2013)

    Article  Google Scholar 

  31. X.B. Wang, C. Song, K.W. Geng, F. Zeng, F. Pan, J. Phys. D Appl. Phys. 39, 4992 (2006)

    Article  Google Scholar 

  32. G. Kim, J. Bang, Y. Kim, S.K. Rout, S.I. Woo, Appl. Phys. A 97, 821–828 (2009)

    Article  Google Scholar 

  33. S. Singhal, T. Namgyal, S. Bansal, K. Chandra, J. Electromagn. Anal. Appl. 2, 376 (2010)

    Google Scholar 

  34. B.J. Lokhande, P.S. Patil, M.D. Uplane, Phys. B 302–303, 59 (2001)

    Article  Google Scholar 

  35. M. Sharmin, A.H. Bhuiyan, Appl. Phys. A 124(1), 57 (2018)

    Article  Google Scholar 

  36. B.N. Pawar, S.R. Jadkar, M.G. Takwale, J. Phys. Chem. Solids 66, 1779 (2005)

    Article  Google Scholar 

  37. E. Burstein, Phys. Rev. 93, 632 (1954)

    Article  Google Scholar 

  38. S. Kim, H. Yoon, D.Y. Kim, S.O. Kim, J.Y. Leem, Opt. Mater. 35(12), 2418 (2013)

    Article  Google Scholar 

  39. S.C. Yadav, M.D. Uplane, Int. J. Eng. Sci. Technol. 4(12), 4893 (2012)

    Google Scholar 

  40. J.C. Simpson, J.F. Cordaro, J. Appl. Phys. 63, 1781 (1988)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the authority of Bangladesh University of Engineering and Technology for financial support and Material Science Division, Atomic energy Centre, Dhaka, Bangladesh, for providing necessary laboratory support to this research work. The authors express sincere thanks to the Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India for providing the laboratory facility for AFM analysis. The authors are grateful to Prof. Dr. Jiban Podder, Department of Physics, BUET for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehnaz Sharmin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharmin, M., Bhuiyan, A.H. Modifications in structure, surface morphology, optical and electrical properties of ZnO thin films with low boron doping. J Mater Sci: Mater Electron 30, 4867–4879 (2019). https://doi.org/10.1007/s10854-019-00781-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00781-8

Navigation