Lead-free Sn-based/MW-CNTs nanocomposite soldering: effects of reinforcing content, Ni-coating modification, and isothermal ageing treatment


In this article, soldering of sheet-form copper substrates in a lap-joint design by using the newly developed lead-free nanocomposite solders based on the ternary eutectic system of Sn–3.5Ag–0.7Cu (in wt%) alloy reinforced with multi-walled carbon nano-tubes (MW-CNTs) was assessed. Different weight percentages of MW-CNTs (0.05, 0.1, 0.15, and 0.2 wt%) were incorporated within the SAC solder matrix by using the powder mixture system and employing of mechanical alloying (MA) processing route. The main object was controlling the formation morphology and growth kinetics of intermetallic compounds (IMCs) layer at the interface with the Cu substrate during soldering process. Also, to improve the compatibility of reinforcing MW-CNTs and solder alloy, decoration of nickel particles on the surface of nanotubes by using the electroless plating system was considered. The results showed that by increasing the amount of reinforcing nanotubes and implementation of Ni-coating on the surface of MW-CNTs, the thickness of IMC layer at the interface between Cu substrate and solder alloy is continuously refined. This important issue yielded to a continuous and significant improvement of tensile strength up to ~ 50%, as compared to the un-reinforced SAC solder alloy, despite of considerable ductility reduction. In following, the influence of post isothermal ageing treatment at a temperature of 150 °C with a holding time up to ~ 100 h on the microstructural characteristics and mechanical property of the soldered joints was elaborated. Employing of such isothermal ageing treatment revealed very effective in more elevating the mechanical strength of soldered joints (to attain the tensile strength of up to ~ 30 MPa). Furthermore, a simultaneous improvement of the elongation to failure more than ~ 22% was noted caused by increasing the thickness of the IMC layer at the interface. To this end, acceleration in the solid-state diffusion of elements played the main role.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    J. Keller, D. Baither, U. Wilke, G. Schmitz, Mechanical properties of Pb-free SnAg solder joints. Acta Mater. 59(7), 2731–2741 (2011)

    CAS  Article  Google Scholar 

  2. 2.

    Y. Yang, J.N. Balaraju, Y. Huang, H. Liu, Z. Chen, Interface reaction between an electroless Ni–Co–P metallization and Sn–3.5Ag lead-free solder with improved joint reliability. Acta Mater. 71, 69–79 (2014)

    CAS  Article  Google Scholar 

  3. 3.

    Y. Yao, J. Fry, M.E. Fine, L.M. Keer, The Wiedemann–Franz–Lorenz relation for lead-free solder and intermetallic materials. Acta Mater. 61(5), 1525–1536 (2013)

    CAS  Article  Google Scholar 

  4. 4.

    F. Khodabakhshi, R. Sayyadi, N.S. Javid, Lead free Sn–Ag–Cu solders reinforced by Ni-coated graphene nanosheets prepared by mechanical alloying: microstructural evolution and mechanical durability. Mater. Sci. Eng. A 702, 371–385 (2017)

    CAS  Article  Google Scholar 

  5. 5.

    M. Huang, F. Yang, Size effect model on kinetics of interfacial reaction between Sn–xAg–yCu solders and Cu substrate. Sci. Rep. 4, 7117 (2014)

    CAS  Article  Google Scholar 

  6. 6.

    L. Zhang, K.N. Tu, Structure and properties of lead-free solders bearing micro and nano particles. Mater. Sci. Eng. R 82(1), 1–32 (2014)

    Google Scholar 

  7. 7.

    S.M.L. Nai, J. Wei, M. Gupta, Interfacial intermetallic growth and shear strength of lead-free composite solder joints. J. Alloys Compd. 473(1–2), 100–106 (2009)

    CAS  Article  Google Scholar 

  8. 8.

    T. Fouzder, Q. Li, Y.C. Chan, D.K. Chan, Interfacial microstructure and hardness of nickel (Ni) nanoparticle-doped tin-silver-copper (Sn–Ag–Cu) solders on immersion silver (Ag)-plated copper (Cu) substrates. J. Mater. Sci. - Mater. Electron. 25(9), 4012–4023 (2014)

    CAS  Article  Google Scholar 

  9. 9.

    N. Zhao, Y. Zhong, M.L. Huang, H.T. Ma, W. Dong, Growth kinetics of Cu6Sn5 intermetallic compound at liquid-solid interfaces in Cu/Sn/Cu interconnects under temperature gradient. Sci. Rep. 5, 13491 (2015)

    CAS  Article  Google Scholar 

  10. 10.

    B. Li, Y. Shi, Y. Lei, F. Guo, Z. Xia, B. Zong, Effect of rare earth element addition on the microstructure of Sn–Ag–Cu solder joint. J. Electron. Mater. 34(3), 217–224 (2005)

    Article  Google Scholar 

  11. 11.

    Y.W. Wang, C.C. Chang, C.R. Kao, Minimum effective Ni addition to SnAgCu solders for retarding Cu3Sn growth. J. Alloys Compd. 478(1), L1–L4 (2009)

    CAS  Article  Google Scholar 

  12. 12.

    M. Sobhy, A.M. El-Refai, M.M. Mousa, G. Saad, Effect of ageing time on the tensile behavior of Sn-3.5 wt% Ag-0.5 wt% Cu (SAC355) solder alloy with and without adding ZnO nanoparticles. Mater. Sci. Eng. A 646, 82–89 (2015)

    CAS  Article  Google Scholar 

  13. 13.

    G. Chen, H. Peng, V.V. Silberschmidt, Y.C. Chan, C. Liu, F. Wu, Performance of Sn–3.0Ag–0.5Cu composite solder with TiC reinforcement: Physical properties, solderability and microstructural evolution under isothermal ageing. J. Alloys Compd. 685, 680–689 (2016)

    CAS  Article  Google Scholar 

  14. 14.

    A. Lee, K.N. Subramanian, Development of nano-composite lead-free electronic solders. J. Electron. Mater. 34(11), 1399–1407 (2005)

    CAS  Article  Google Scholar 

  15. 15.

    M.H. Obaidat, O.T. Al Meanazel, M.A. Gharaibeh, H.A. Almomani, Pad cratering: reliability of assembly level and joint level. Jordan J. Mech. Ind. Eng. 10(4), 271–277 (2016)

    Google Scholar 

  16. 16.

    Y. Fujiwara, H. Enomoto, T. Nagao, H. Hoshika, Composite plating of Sn–Ag alloys for Pb-free soldering, Surf. Coat. Technol. 169–170 (2003) 100–103

    Article  CAS  Google Scholar 

  17. 17.

    S.Y. Hwang, J.W. Lee, Z.H. Lee, Microstructure of a lead-free composite solder produced by an in-situ process. J. Electron. Mater. 31(11), 1304–1308 (2002)

    CAS  Article  Google Scholar 

  18. 18.

    J.W. Lee, Z.H. Lee, H.M. Lee, Formation of intermetallic compounds in the Ni bearing lead free composite solders. Mater. Trans. 46(11), 2344–2350 (2005)

    CAS  Article  Google Scholar 

  19. 19.

    N.H. Cao-Luu, Q.T. Pham, Z.H. Yao, F.M. Wang, C.S. Chern, Synthesis and characterization of poly(N-isopropylacrylamide-co-acrylamide) mesoglobule core–silica shell nanoparticles. J. Colloid Interface Sci. 536, 536–547 (2019)

    CAS  Article  Google Scholar 

  20. 20.

    J. Li, J. Ma, S. Chen, Y. Huang, J. He, Adsorption of lysozyme by alginate/graphene oxide composite beads with enhanced stability and mechanical property. Mater. Sci. Eng. C 89, 25–32 (2018)

    CAS  Article  Google Scholar 

  21. 21.

    M. Ma, Y. Yang, W. Li, R. Feng, Z. Li, P. Lyu, Y. Ma, Gold nanoparticles supported by amino groups on the surface of magnetite microspheres for the catalytic reduction of 4-nitrophenol. J. Mater. Sci. 54(1), 323–334 (2019)

    CAS  Article  Google Scholar 

  22. 22.

    G. Wu, Y. Cheng, Z. Yang, Z. Jia, H. Wu, L. Yang, H. Li, P. Guo, H. Lv, Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 333, 519–528 (2018)

    CAS  Article  Google Scholar 

  23. 23.

    G. Wu, Z. Jia, Y. Cheng, H. Zhang, X. Zhou, H. Wu, Easy synthesis of multi-shelled ZnO hollow spheres and their conversion into hedgehog-like ZnO hollow spheres with superior rate performance for lithium ion batteries. Appl. Surf. Sci. 464, 472–478 (2019)

    CAS  Article  Google Scholar 

  24. 24.

    S.R. Bakshi, D. Lahiri, A. Agarwal, Carbon nanotube reinforced metal matrix composites—a review. Int. Mater. Rev. 55(1), 41–64 (2013)

    Article  CAS  Google Scholar 

  25. 25.

    J. Mittal, K.L. Lin, The formation of electric circuits with carbon nanotubes and copper using tin solder. Carbon 49(13), 4385–4391 (2011)

    CAS  Article  Google Scholar 

  26. 26.

    S. Berber, Y.K. Kwon, D. Tománek, Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84(20), 4613–4616 (2000)

    CAS  Article  Google Scholar 

  27. 27.

    J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’ko, Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44(9), 1624–1652 (2006)

    CAS  Article  Google Scholar 

  28. 28.

    S.M.L. Nai, M. Gupta, J. Wei, Evelopment of novel lead-free solder composites using carbon nanotube reinforcements. Int. J. Nanosci. 4(4), 423–429 (2005)

    CAS  Article  Google Scholar 

  29. 29.

    S.M.L. Nai, J. Wei, M. Gupta, Lead-free solder reinforced with multiwalled carbon nanotubes. J. Electron. Mater. 35(7), 1518–1522 (2006)

    CAS  Article  Google Scholar 

  30. 30.

    S.M.L. Nai, J. Wei, M. Gupta, Improving the performance of lead-free solder reinforced with multi-walled carbon nanotubes. Mater. Sci. Eng. A 423(1–2), 166–169 (2006)

    Article  CAS  Google Scholar 

  31. 31.

    E.K. Choi, K.Y. Lee, T.S. Oh, Fabrication of multiwalled carbon nanotubes-reinforced Sn nanocomposites for lead-free solder by an electrodeposition process. J. Phys. Chem. Solids 69(5–6), 1403–1406 (2008)

    CAS  Article  Google Scholar 

  32. 32.

    K.M. Kumar, V. Kripesh, A.A.O. Tay, Single-wall carbon nanotube (SWCNT) functionalized Sn–Ag–Cu lead-free composite solders. J. Alloys Compd. 450(1–2), 229–237 (2008)

    CAS  Article  Google Scholar 

  33. 33.

    V.L. Niranjani, B.S.S.C. Rao, V. Singh, S.V. Kamat, Influence of temperature and strain rate on tensile properties of single walled carbon nanotubes reinforced Sn–Ag–Cu lead free solder alloy composites. Mater. Sci. Eng., A 529(1), 257–264 (2011)

    CAS  Article  Google Scholar 

  34. 34.

    S.M.L. Nai, J. Wei, M. Gupta, Effect of carbon nanotubes on the shear Strength and electrical resistivity of a lead-free solder. J. Electron. Mater. 37(4), 515–522 (2008)

    CAS  Article  Google Scholar 

  35. 35.

    S.M.L. Nai, J. Wei, M. Gupta, Using carbon nanotubes to enhance creep performance of lead free solder. Mater. Sci. Technol. 24(4), 443–448 (2008)

    CAS  Article  Google Scholar 

  36. 36.

    S. Chantaramanee, S. Wisutmethangoon, L. Sikong, T. Plookphol, Development of a lead-free composite solder from Sn–Ag–Cu and Ag-coated carbon nanotubes. J. Mater. Sci. - Mater. Electron. 24(10), 3707–3715 (2013)

    CAS  Article  Google Scholar 

  37. 37.

    Z. Yang, W. Zhou, P. Wu, Effects of Ni-coated Carbon Nanotubes addition on the electromigration of Sn–Ag–Cu solder joints. J. Alloys Compd. 581, 202–205 (2013)

    CAS  Article  Google Scholar 

  38. 38.

    S.H. Kim, M.S. Park, J.P. Choi, C. Aranas Jr., Improved electrical and thermo-mechanical properties of a MWCNT/In–Sn–Bi composite solder reflowing on a flexible PET substrate. Sci. Rep. 7(1), 13756 (2017)

    Article  CAS  Google Scholar 

  39. 39.

    V. Gopee, O. Thomas, C. Hunt, V. Stolojan, J. Allam, S.R. Silva, Carbon nanotube interconnects realized through functionalization and sintered silver attachment. ACS Appl. Mater. Interfaces 8(8), 5563–5570 (2016)

    CAS  Article  Google Scholar 

  40. 40.

    S. Xu, X. Hu, Y. Yang, Z. Chen, Y.C. Chan, Effect of carbon nanotubes and their dispersion on electroless Ni–P under bump metallization for lead-free solder interconnection. J. Mater. Sci. - Mater. Electron. 25(6), 2686–2691 (2014)

    Google Scholar 

  41. 41.

    K. Mehrabi, F. Khodabakhshi, E. Zareh, A. Shahbazkhan, A. Simchi, Effect of alumina nanoparticles on the microstructure and mechanical durability of meltspun lead-free solders based on tin alloys. J. Alloys Compd. 688, 143–155 (2016)

    CAS  Article  Google Scholar 

  42. 42.

    G. Zeng, S. McDonald, K. Nogita, Development of high-temperature solders: review. Microelectron. Reliab. 52(7), 1306–1322 (2012)

    CAS  Article  Google Scholar 

  43. 43.

    X.D. Liu, Y.D. Han, H.Y. Jing, J. Wei, L.Y. Xu, Effect of graphene nanosheets reinforcement on the performance of Sn–Ag–Cu lead-free solder. Mater. Sci. Eng. A 562, 25–32 (2013)

    CAS  Article  Google Scholar 

  44. 44.

    K. Prakash, T. Sritharan, Interface reaction between copper and molten tin–lead solders. Acta Mater. 49(13), 2481–2489 (2001)

    CAS  Article  Google Scholar 

  45. 45.

    A. Agarwal, S.R. Bakshi, D. Lahiri, Carbon Nanotubes: Reinforced Metal Matrix Composites (CRC Press, Boca Raton, 2016)

    Google Scholar 

  46. 46.

    Y.D. Han, H.Y. Jing, S.M.L. Nai, L.Y. Xu, C.M. Tan, J. Wei, Interfacial reaction and shear strength of Ni-coated carbon nanotubes reinforced Sn–Ag–Cu solder joints during thermal cycling. Intermetallics 31, 72–78 (2012)

    Article  CAS  Google Scholar 

  47. 47.

    M. Kouzeli, A. Mortensen, Size dependent strengthening in particle reinforced aluminium. Acta Mater. 50(1), 39–51 (2002)

    CAS  Article  Google Scholar 

  48. 48.

    F. Khodabakhshi, A. Simchi, A.H. Kokabi, P. Švec, F. Simančík, A.P. Gerlich, Effects of nanometric inclusions on the microstructural characteristics and strengthening of a friction-stir processed aluminum–magnesium alloy. Mater. Sci. Eng. A 642, 215–229 (2015)

    CAS  Article  Google Scholar 

  49. 49.

    F. Khodabakhshi, A.P. Gerlich, P. Švec, Reactive friction-stir processing of an Al-Mg alloy with introducing multi-walled carbon nano-tubes (MW-CNTs): Microstructural characteristics and mechanical properties. Mater. Charact. 131, 359–373 (2017)

    CAS  Article  Google Scholar 

  50. 50.

    F. Khodabakhshi, M. Nosko, A.P. Gerlich, Influence of CNTs decomposition during reactive friction-stir processing of an Al–Mg alloy on the correlation between microstructural characteristics and microtextural components. J. Microsc. 271(2), 188–206 (2018)

    CAS  Article  Google Scholar 

  51. 51.

    G.E. Dieter, D.J. Bacon, Mechanical Metallurgy (McGraw-Hill, New York, 1986)

    Google Scholar 

  52. 52.

    Y.D. Han, S.M.L. Nai, H.Y. Jing, L.Y. Xu, C.M. Tan, J. Wei, Development of a Sn–Ag–Cu solder reinforced with Ni-coated carbon nanotubes. J. Mater. Sci. - Mater. Electron. 22(3), 315–322 (2011)

    CAS  Article  Google Scholar 

  53. 53.

    Y.D. Han, H.Y. Jing, S.M.L. Nai, L.Y. Xu, C.M. Tan, J. Wei, Creep mitigation in Sn–Ag–Cu composite solder with Ni-coated carbon nanotubes. J. Mater. Sci. - Mater. Electron. 23(5), 1108–1115 (2011)

    Article  CAS  Google Scholar 

  54. 54.

    T.K. Lee, T.R. Bieler, C.U. Kim, H. Ma, Fundamentals of Lead-Free Solder Interconnect Technology (Springer, New York, 2015)

    Google Scholar 

  55. 55.

    F. Gao, T. Takemoto, H. Nishikawa, Effects of Co and Ni addition on reactive diffusion between Sn–3.5 Ag solder and Cu during soldering and annealing. Mater. Sci. Eng. A 420(1–2), 39–46 (2006)

    Article  CAS  Google Scholar 

  56. 56.

    S. Tay, A. Haseeb, M.R. Johan, P. Munroe, M.Z. Quadir, Influence of Ni nanoparticle on the morphology and growth of interfacial intermetallic compounds between Sn–3.8 Ag–0.7 Cu lead-free solder and copper substrate. Intermetallics 33, 8–15 (2013)

    CAS  Article  Google Scholar 

  57. 57.

    A.A. El-Daly, A.M. El-Taher, T.R. Dalloul, Improved creep resistance and thermal behavior of Ni-doped Sn–3.0Ag–0.5Cu lead-free solder. J. Alloys Compd. 587, 32–39 (2014)

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to F. Khodabakhshi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Javid, N.S., Sayyadi, R. & Khodabakhshi, F. Lead-free Sn-based/MW-CNTs nanocomposite soldering: effects of reinforcing content, Ni-coating modification, and isothermal ageing treatment. J Mater Sci: Mater Electron 30, 4737–4752 (2019). https://doi.org/10.1007/s10854-019-00767-6

Download citation