Surface morphology, optical properties and Urbach tail of spray deposited Co3O4 thin films


Cobalt oxide (Co3O4) thin films were deposited onto glass substrates by a simple spray pyrolysis technique using Co (CH3COO)2 .4H2O as a precursor material. The as-deposited films were characterized using field emission scanning electron microscope (FESEM) and UV–visible spectrophotometer. FESEM images showed uniform and well-aligned nanofiber growth of Co3O4 thin film. The average crystallite size was found to increase from 15 to 25 nm with the increase of substrate temperature. The increase in average crystallite size may be due to the agglomeration and recrystallization of cobalt oxide nanoparticles. The absorption peaks obtained at 355 nm and 540 nm were attributed to the transitions taking place between oxygen and cobalt charge transfer (O2− → Co3+ and O2− → Co2+). The energy band gap was found to decrease from 2.35 to 2.03 eV and Urbach energy (Eu) increased from 0.73 eV to 0.84 eV with the increased substrate temperatures from 250 °C to 350 °C. The optical absorption coefficient exhibited an exponential dependence of photon energy following Urbach’s rule, and Urbach tail was dependent on lattice defects. The direct band gap of the Co3O4 thin film clearly showed a red shift with increasing temperature and provided an absorption favorable for bio-sensing applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Q. Tian, X. Wang, G. Huang, X. Guo, Nanoscale Res. Lett. 12, 214 (2017)

    Article  Google Scholar 

  2. 2.

    A. Hans, P. Garcia, Ronaldo, Jr. de Melo, A., C.B. Antonio, de Araujo, Appl. Phys. B 111, 313 (2013)

    Article  Google Scholar 

  3. 3.

    C. Jia, S. Wu. Xifan, Annabella, Phys. Rev. B 83, 245204 (2011)

    Article  Google Scholar 

  4. 4.

    N. Ghobadi, M. Ganji, C. Luna, A. Ahmadpourian, A. Arman, Opt Quant Electron 48, 467 (2016)

    Article  Google Scholar 

  5. 5.

    M.A. Chougule, S.G. Pawar, P.R. Godse, R.D. Sakhare, S. Sen, V.B. Patil, J. Mater. Sci. 23, 772 (2012)

    CAS  Google Scholar 

  6. 6.

    T. Chtouki, A. Louardi, B. Elidrissi, H. Erguig, J. Mater. Sci. Eng. A 3, 743 (2013)

    CAS  Google Scholar 

  7. 7.

    P.S. Patil, P.R. Patil, L.D. Kadam, S.H. Pawar, Bull. Electrochem. 15, 307 (1999)

    CAS  Google Scholar 

  8. 8.

    X. Su, L. Yu, G. Cheng, H. Zhang, M. Sun, L. Zhang, J. Zhang, Appl. Energy 134, 439 (2014)

    CAS  Article  Google Scholar 

  9. 9.

    X.H. Xia, J.P. Tu, J. Zhang, X.H. Huang, X.L. Wang, W.K. Zhang, H. Huang, ElectroChem. Commun. 10, 1815 (2008)

    CAS  Article  Google Scholar 

  10. 10.

    K.J. Cathro, Sol. Energy Mater. 9, 433 (1984)

    CAS  Article  Google Scholar 

  11. 11.

    S.A. Campbell, H.S. Kim, D.C. Gilmer, B. He, T. Ma, W.L. Gladfelter, IBM J. Res. Dev 43(3), 383 (1999)

    CAS  Article  Google Scholar 

  12. 12.

    E. Ghafari, X. Jiang, N. Lu, Adv, Compd. Hybrid Mater.,, (2017)

    Article  Google Scholar 

  13. 13.

    D. Barreca, C. Massignan, S. Daolio, M. Fabrizio, C. Piccirillo, L. Armelao, E. Tondello, Chem. Mater. 13(2), 588 (2001)

    CAS  Article  Google Scholar 

  14. 14.

    D. Dastan, P.U. Londhe, N.B. Chaure, J. Mater. Sci.,, (2014)

    Article  Google Scholar 

  15. 15.

    J. Wollenstein, M. Burgmair, G. Plescher, T. Sulima, J. Hildenbrand, H. Bottner, I. Eisele, Sens. Actuators B 93, 442 (2003)

    CAS  Article  Google Scholar 

  16. 16.

    H. Yamamoto, S. Tanaka, J. Appl. Phys. 93, 4158 (2003)

    CAS  Article  Google Scholar 

  17. 17.

    S. Gerasimos, P. Armatas, E. Alexandros, Katsoulidis, Dimitris, Petrakis, J. Philippos. Chem. Mater. 22, 5739 (2010)

    Article  Google Scholar 

  18. 18.

    P. Kubelka, F. Munk, Z. Tech. Phys. 12, 593 (1931)

    Google Scholar 

  19. 19.

    H. Lin, C.P. Huang, W. Li, C. Ni, S.I. Shah, Y. Tseng, Appl. Catal. B 68(1), 1 (2006)

    CAS  Article  Google Scholar 

  20. 20.

    R. Lopez, R. Gomez, J. Sol-Gel Sci. Tech. 61, 1 (2012)

    CAS  Article  Google Scholar 

  21. 21.

    T. He, P. Ehrhart, P. Meuffels, J. Appl. Phys. 79(6), 3219 (1996)

    CAS  Article  Google Scholar 

  22. 22.

    F. Abeles, Optical Properties of Solids (North-Holland, Amsterdam, 1972)

    Google Scholar 

  23. 23.

    F. Urbach, Phys. Rev. 92(5), 1324 (1953)

    CAS  Article  Google Scholar 

  24. 24.

    M. Chavez, H. Juarez, M. Pacquiao, X. Mathews, R. Gutierrez, L. Chatel, M. Zamora, O. Portillo, Rev. Mex. Fis. 62, 124 (2016)

    Google Scholar 

  25. 25.

    S.J. Ikhmayies, R.N. Ahmad-Bitar, J. Mater. Res. Tech. 2, 221 (2013)

    CAS  Article  Google Scholar 

  26. 26.

    W.D. Park, Trans. Electr. Electron. Mater. 1(4), 164 (2011)

    Article  Google Scholar 

  27. 27.

    C. Daniel, F.S. Wood, Fitting Equations to Data (Wiley, New York, 1971), p. 264

    Google Scholar 

  28. 28.

    A.M.E. Raj, V. Agnes, V. Bena Jothy, C. Ravidhas, J. Wollschlager, M. Suendorf, M. Neumann, M. Jayachandran, C. Sanjeeviraja, Thin Solid Films 519(1), 129 (2010)

    CAS  Article  Google Scholar 

  29. 29.

    J. Melsheimer, D. Ziegler, Thin Solid Films 129(1), 35 (1985)

    CAS  Article  Google Scholar 

  30. 30.

    H. Yamamoto, S. Tanaka, J. Appl. Phys. 93(7), 4158 (2003)

    CAS  Article  Google Scholar 

Download references


One of the authors, Muslima Zahan is grateful to the Ministry of Science and Technology, Government of the People’s Republic of Bangladesh for granting NST fellowship for her PhD program.

Author information



Corresponding author

Correspondence to Jiban Podder.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zahan, M., Podder, J. Surface morphology, optical properties and Urbach tail of spray deposited Co3O4 thin films. J Mater Sci: Mater Electron 30, 4259–4269 (2019).

Download citation