Skip to main content
Log in

The effects of MoO3/TPD multiple quantum well structures on the performance of organic light emitting diodes (OLEDs)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, the influence of the molybdenum trioxide (MoO3) /N,N–Bis(3-methylphenyl)-N,N–bis(phenyl)benzidine(TPD)-like diamine multiple quantum well (MQW) structures as a hole injection layer (HIL)/hole transport layer (HTL) on the performance of organic light emitting diodes(OLEDs) has been studied. These devices have been attracted intensively due to their importance for using in fabrication of displays and solid state lightning and their interesting properties such as the lower voltage for operation, lower power utilization for light emission, clarification, inexpensiveness and lightness. The obtained results show that by using the MQW structures, the current density, luminance, current efficiency, power efficiency and electroluminescence (EL) spectra intensity of OLEDs is enhanced with respect to the simple device (SD). In MQW devices, the difference between Fermi level of indium tin oxide (ITO) (4.7 eV) and HOMO level of TPD (5.4 eV), leads to the reduction of driving and operating voltage. This finding indicates an enhancement of the hole injection and can therefore be used for the future of OLED devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.W. Tang, S.A. VanSlyke, Appl. Phys. Lett. 51, 913–915 (1987)

    Article  Google Scholar 

  2. W. Cao, Y. Zheng, Z. Li, E. Wrzesniewski, W.T. Hammond, J. Xue, Org. Electron. 13, 2221–2228 (2012)

    Article  Google Scholar 

  3. S.W. Seo, E. Jung, S.J. Seo, H. Chae, H.K. Chung, S.M. Cho, J. Appl. Phys. 114, 1435051–1435057 (2013)

    Google Scholar 

  4. W. Brutting, j. Frischeisen, T.D. Schmidt, B.J. Scholz, C. Mayr, Phys. Status Solidi A. 1–22 (2012)

  5. R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. .Taliani, D.D.C. Bradley, D.A.Dos Santos, J.L. .Bredas, M. Logdlund, W.R. Salaneck, Nature 397, 121–128 (1999)

    Article  Google Scholar 

  6. T. Zhang, Z. Xu, L. Qian, F. Teng, Z.Q. He, X.R. Xu, Thin Solid Films .483, 346–350 (2005)

    Article  Google Scholar 

  7. T. Matsushima, G.H. Jin, H. Murata, J. Appl. Phys. .104, 054501 (2008)

    Article  Google Scholar 

  8. H.M. Zhang, C.H. Wallace, IEEE Trans. Electron. Dev .55, 2517–2520 (2008)

    Article  Google Scholar 

  9. J.Pommerehne, Y.H.Tak, H.Vestweber, H. Bassler, Synth. Met. 76, 67–70 (1996)

    Article  Google Scholar 

  10. D. Dastan, S.W. Gosavi, N.B. Chaure, Macromol. Symp. 347, 81–86 (2015)

    Article  Google Scholar 

  11. D. Dastan, Appl. Phys. A. 123(699), 1–13 (2017)

    Google Scholar 

  12. L.S. Li, M. Guan, G.H. Cao, Y.Y. Li, Y.P. Zeng, Displays 33, 17–20 (2012)

    Article  Google Scholar 

  13. C.F. Qiu, M. Wong, L.D. Wang, H.Y. Chen, H.S. Kwok, Appl. Phys. Lett. .79, 2276–2278 (2001)

    Article  Google Scholar 

  14. S. NaKa, Y. Yamaguchi, T. Tsutsui, H. Okada, H. Onnagawa, Synth. Met. 111–112, 331–333 (2000)

    Article  Google Scholar 

  15. L.S. Huang, M.G. Mason, C.W. Tang, Appl. Phys. Lett. 70, 152–154 (1997)

    Article  Google Scholar 

  16. G.E. Jabbour, N.R. Armstrong, N. Peyghambarian, B. Kippelen, Appl. Phys. Lett. 73, 1185–1187 (1998)

    Article  Google Scholar 

  17. T.M. Brown, R.H. Friend, J.H. Burroughes, I.S. Millard, D.J. Lacey, F. Cacialli, Appl. Phys. Lett. 79, 174–176 (2001)

    Article  Google Scholar 

  18. S.J. Kang, S.Y. Kim, S. Lm, K. Jeong, D.S. .Park, C.N. Whang, Appl. Phys. Lett. .81, 2581–2583 (2002)

    Article  Google Scholar 

  19. F.F. So, S.R. Forrest, Y.Q. Shi, W.H. Steler, Appl. Phys. Lett. 56, 674–676 (1990)

    Article  Google Scholar 

  20. F.F. So, S.R. Forrest, Phys. Rev. Lett. 66, 2649–2652 (1991)

    Article  Google Scholar 

  21. Y. Ohmori, A. Fujii, M. Uchida, C. Morishima, K. Yoshino, Appl. Phys. Lett. 63, 1871–1873 (1993)

    Article  Google Scholar 

  22. Y. Ohmori, A. Fujii, M. Uchida, C. Morishima, K. Yoshino, Appl. Phys. Lett. 62, 3250–3252 (1993)

    Article  Google Scholar 

  23. H.Y. An, B.J. Chen, J.Y. Hou, J.C. Shen, S.Y. Liu, J. Phys. D: Appl.Phys. 31, 1144–1148 (1998)

    Article  Google Scholar 

  24. S.Fujita,T.Nakazawa,M.Asano,Jpn. J. Appl. Phys. 39,5301–5309(2000)

    Article  Google Scholar 

  25. D.W. Zhao, S.F. Song, F.J. Zhang, S.L. .Zhao, C. Xu, Z. Xu, Displays 28, 81–84 (2007)

    Article  Google Scholar 

  26. A. Akimichi, T. Inoshita, S. Hotta, H. Noge, H. Sakaki, Appl. Phys. Lett. 63, 3158–3160 (1993)

    Article  Google Scholar 

  27. X. Haitao, Z. Xiang, J. Appl. Phys. 114, 2445051–2445055 (2013)

    Google Scholar 

  28. F.X. Wang, X.F. Qiao, T. Xiong, D.G. Ma, Org. Electron. 9985–9989 (2008)

  29. P.S. Wang, Y.Y. Lo, W.H. Tseng, M.H. Chen, C.I. Wu, J. Appl. Phys. 114, 0637101–0637105 (2013)

    Google Scholar 

  30. Y. Zhao, J. Zhang, S. Liu, Y. Gao, X. Yang, K.S. .Leck, A.P. Abiyasa, Y. Divayana, E. Mutlugun, S.T. .Tan, Q. Xiong, H.V. Demir, X.W. Sun, Org. Electron. 15, 871–877 (2014)

    Article  Google Scholar 

  31. M. Shahbazi, A. Ghadesi, Sh. Bahari, Org. Electron. 32, 100–108 (2016)

    Article  Google Scholar 

  32. D. Dastan, A. Banpurkar. J. Mater. Sci.: Mater. Electron. 28, 3851–3859 (2016)

    Google Scholar 

  33. M.D. Morales-Acosta, C.G. Alvarado-Beitra, M.A. Quevedo-Lopez, B.E. Gnade, J. Non-Cryst. Solids 326, 124–132 (2013)

    Article  Google Scholar 

  34. A. Adeleh Hashemi, Bahari, S. Ghasemi, J. Mater. Sci. 28, 13313–13319 (2017)

    Google Scholar 

  35. D. Dastan, S.L. Panahi, N.B. Chaure, J. Mater. Sci. 27, 12291–12296 (2016)

    Google Scholar 

  36. M.D. Morales-Acosta, M.A. Quevedo-Lopez, B.E. Gnade, R.Ramirez -Bon, J. Sol–Gel. Sci. Technol. 58, 218–224 (2011)

    Article  Google Scholar 

  37. D. Dastan, J. Atomic Mol. Cond. Nano Phys. 2(2, 109–114 (2015)

    Google Scholar 

  38. D. Dastan, S.L. Panahi, A.P. Yengntiwar, A.G. Banpurkar, Adv. Sci. Lett. 22(4), 950–953 (2016)

    Article  Google Scholar 

  39. F.X. Wang, X.F. Qiao, T. Xiong, D.G. Ma, Org. Electron. 9, 985–993 (2008)

    Article  Google Scholar 

  40. H. Lee, S.W. Cho, K. Han, P.E. Jeon, C. Whang, K. Jeong, K. Cho, andY. Yi, Appl. Phys. Lett. 93, 0433081–0433083 (2008)

    Google Scholar 

  41. K. Kanai, K. Koizumi, S. Ouchi, Y. Tsukamoto, K. Sakanoue, Y. Ouchi, K. Seki, Org. Electron. 11, 188–194 (2010)

    Article  Google Scholar 

  42. T. Matsushima, Y. Kinoshita, H. Murata, Appl. Phys. Lett. 91, 2535041–2535043 (2007)

    Google Scholar 

  43. D.D. Zhang, J. Feng, L. Chen, H. Wang, Y.F. Liu, Y. Jin, Y. Bai, Y.Q. Zhong, H.B. Sun, IEEE J. Quantum Electron. 47, 591–596 (2011)

    Article  Google Scholar 

  44. D. Dastan, N. Chaure, M. Kartha, J. Mater. Sci. 28, 7784–7796 (2017)

    Google Scholar 

  45. D. Dastan, P.U. Londhe, N.B. Chaure, J. Mater. Sci. 25, 3473–3479 (2014)

    Google Scholar 

  46. D. Dastan, N.B. Chaure, Int. J. Mater. Mech. Manuf. 2(1), 21–24 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bahari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayobi, A., Mirnia, S.N., Roknabadi, M.R. et al. The effects of MoO3/TPD multiple quantum well structures on the performance of organic light emitting diodes (OLEDs). J Mater Sci: Mater Electron 30, 3952–3958 (2019). https://doi.org/10.1007/s10854-019-00680-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00680-y

Navigation