Skip to main content

Advertisement

Log in

Cobalt nanoparticles embedded into polydimethylsiloxane-grafted cocoa shell: functional agrowaste for CO2 capture

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper presents for the first time surface functionalization of cocoa shells (CS) through the covalent grafting of 3-aminopropyltriethoxysilane (APTES) followed by the substitution of poly(dimethylsiloxane) (PDMS) and in situ generation/insertion of cobalt nanoparticles (Co-NP). The immobilization and stability of APTES–PDMS on cocoa shell were confirmed by Fourier transform infrared spectroscopy and differential scanning calorimetry. Morphological analyses by scanning electron microscopy demonstrated that Co-NPs successfully grew on the surface of CS–APTES–PDMS. The CO2-adsorption capacity of these new materials was examined at ambient conditions. Both CS–APTES–PDMS and CS–APTES–PDMS–Co showed increased CO2 adsorption capacities as compared to unmodified cocoa shell. This enhancement was explained by the synergetic behavior of the silane derivate, PDMS grafting, and Co-NP incorporation for CO2 adsorption. This work represents a new step toward using cocoa shell as an excellent low-cost candidate for a variety of environmental applications such as CO2 storage at ambient temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R.D. Srivastava, Advances in CO2 capture technology—the U.S. department of energy’s carbon sequestration program. Int. J. Greenhouse Gas Control 2(1), 9–20 (2008)

    Article  CAS  Google Scholar 

  2. C. Azar, K. Lindgren, E. Larson, K. Möllersten, Carbon capture and storage from fossil fuels and biomass—costs and potential role in stabilizing the atmosphere. Clim. Change 74(1), 47–79 (2006)

    Article  CAS  Google Scholar 

  3. D. Aaron, C. Tsouris, Separation of CO2 from flue gas: a review. Sep. Sci. Technol. 40(1–3), 321–348 (2005)

    Article  CAS  Google Scholar 

  4. Y.L. Tan, M.A. Islam, M. Asif, B.H. Hameed, Adsorption of carbon dioxide by sodium hydroxide-modified granular coconut shell activated carbon in a fixed bed. Energy 77, 926–931 (2014)

    Article  CAS  Google Scholar 

  5. S. Builes, P. López-Aranguren, J. Fraile, L.F. Vega, C. Domingo, Analysis of CO2 adsorption in amine-functionalized porous silicas by molecular simulations. Energy Fuels 29(6), 3855–3862 (2015)

    Article  CAS  Google Scholar 

  6. P. López-Aranguren, S. Builes, J. Fraile, L.F. Vega, C. Domingo, Understanding the performance of new amine-functionalized mesoporous silica materials for CO2 adsorption. Ind. Eng. Chem. Res. 53(40), 15611–15619 (2014)

    Article  CAS  Google Scholar 

  7. E. David, J. Kopac, Activated carbons derived from residual biomass pyrolysis and their CO2 adsorption capacity. J. Anal. Appl. Pyrolysis 110, 322–332 (2014)

    Article  CAS  Google Scholar 

  8. A. Kongnoo, P. Intharapat, P. Worathanakul, C. Phalakornkule, Diethanolamine impregnated palm shell activated carbon for CO2 adsorption at elevated temperatures. J. Environ. Chem. Eng. 4(1), 73–81 (2016)

    Article  CAS  Google Scholar 

  9. K. Li, S. Tian, J. Jiang, J. Wang, X. Chen, F. Yan, Pine cone shell-based activated carbon used for CO2 adsorption. J. Mater. Chem. A 4(14), 5223–5234 (2016)

    Article  CAS  Google Scholar 

  10. T. Chen, S. Deng, B. Wang, J. Huang, Y. Wang, G. Yu, CO2 adsorption on crab shell derived activated carbons: contribution of micropores and nitrogen-containing groups. RSC Adv. 5(60), 48323–48330 (2015)

    Article  CAS  Google Scholar 

  11. S. Sengupta, V. Amte, R. Dongara, A.K. Das, H. Bhunia, P.K. Bajpai, Effects of the adsorbent preparation method for CO2 capture from flue gas using K2CO3/Al2O3 adsorbents. Energy Fuels 29(1), 287–297 (2015)

    Article  CAS  Google Scholar 

  12. Y. Liu, N. Zhang, Gadolinium loaded nanoparticles in theranostic magnetic resonance imaging. Biomaterials 33(21), 5363–5375 (2012)

    Article  CAS  Google Scholar 

  13. X. Zhao, W. Wang, Y. Zhang, S. Wu, F. Li, J.P. Liu, Synthesis and characterization of gadolinium doped cobalt ferrite nanoparticles with enhanced adsorption capability for congo red. Chem. Eng. J. 250, 164–174 (2014)

    Article  CAS  Google Scholar 

  14. M. Ledwaba, N. Masilela, T. Nyokong, E. Antunes, Surface modification of silica-coated gadolinium oxide nanoparticles with zinc tetracarboxyphenoxy phthalocyanine for the photodegradation of orange G. J. Mol. Catal. A 403, 64–76 (2015)

    Article  CAS  Google Scholar 

  15. A. Pattanayak, S.C. Jana, Thermoplastic polyurethane nanocomposites of reactive silicate clays: effects of soft segments on properties. Polymer 46(14), 5183–5193 (2005)

    Article  CAS  Google Scholar 

  16. E.V. Lebedev, S.S. Ishchenko, V.D. Denisenko, V.O. Dupanov, E.G. Privalko, A.A. Usenko, V.P. Privalko, Physical characterization of polyurethanes reinforced with the in situ-generated silica-polyphosphate nano-phase. Compos. Sci. Technol. 66(16), 3132–3137 (2006)

    Article  CAS  Google Scholar 

  17. H.D. Rozman, Y.S. Yeo, G.S. Tay, A. Abubakar, The mechanical and physical properties of polyurethane composites based on rice husk and polyethylene glycol. Polym. Test. 22(6), 617–623 (2003)

    Article  CAS  Google Scholar 

  18. J. Liu, P.K. Thallapally, B.P. McGrail, D.R. Brown, J. Liu, Progress in adsorption-based CO2 capture by metal-organic frameworks. Chem. Soc. Rev. 41(6), 2308–2322 (2012)

    Article  CAS  Google Scholar 

  19. J.-Y. Jung, J.W. Lee, Y.T. Kang, CO2 absorption characteristics of nanoparticle suspensions in methanol. J. Mech. Sci. Technol. 26(8), 2285–2290 (2012)

    Article  Google Scholar 

  20. J. Baltrusaitis, J. Schuttlefield, E. Zeitler, V.H. Grassian, Carbon dioxide adsorption on oxide nanoparticle surfaces. Chem. Eng. J. 170(2–3), 471–481 (2011)

    Article  CAS  Google Scholar 

  21. M. Barberio, P. Barone, A. Imbrogno, F. Xu, CO2 adsorption on silver nanoparticle/carbon nanotube nanocomposites: a study of adsorption characteristics. Phys. Status Solidi B 252(9), 1955–1959 (2015)

    Article  CAS  Google Scholar 

  22. X. Xu, C. Song, J.M. Andresen, B.G. Miller, A.W. Scaroni, Adsorption separation of CO2 from simulated flue gas mixtures by novel CO2 “molecular basket” adsorbents. Int. J. Environ. Technol. Manag. 4, 32–52 (2004)

    Article  CAS  Google Scholar 

  23. A. Ergudenler, A.E. Ghaly, Quality of gas produced from wheat straw in a dual-distributor type fluidized bed gasifier. Biomass Bioenergy 3(6), 419–430 (1992)

    Article  CAS  Google Scholar 

  24. Y. Shen, K. Yoshikawa, Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—a review. Renew. Sustain. Energy Rev. 21, 371–392 (2013)

    Article  CAS  Google Scholar 

  25. O. Ioannidou, A. Zabaniotou, Agricultural residues as precursors for activated carbon production—a review. Renew. Sustain. Energy Rev. 11(9), 1966–2005 (2007)

    Article  CAS  Google Scholar 

  26. A.R. Mohamed, M. Mohammadi, G.N. Darzi, Preparation of carbon molecular sieve from lignocellulosic biomass: A review. Renew. Sustain. Energy Rev. 14(6), 1591–1599 (2010)

    Article  CAS  Google Scholar 

  27. A. Azzouz, S. Nousir, N. Bouazizi, R. Roy, Metal–inorganic–organic matrices as efficient sorbents for hydrogen storage. ChemSusChem 8(5), 800–803 (2015)

    Article  CAS  Google Scholar 

  28. A.F. Pinheiro de Melo, Development and characterization of polymer-grafted ceramic membranes for solvent nanofiltration. GVO drukkers & vormgevers BV| Ponsen & Looijen: 2013

  29. N. Bouazizi, M. Khelil, F. Ajala, T. Boudharaa, A. Benghnia, H. Lachheb, R. Ben Slama, B. Chaouachi, A. M’Nif, A. Azzouz, Molybdenum-loaded 1,5-diaminonaphthalene/ZnO materials with improved electrical properties and affinity towards hydrogen at ambient conditions. Int. J. Hydrog. Energy 41(26), 11232–11241 (2016)

    Article  CAS  Google Scholar 

  30. G. Fritz, V. Schädler, N. Willenbacher, N.J. Wagner, Electrosteric stabilization of colloidal dispersions. Langmuir 18(16), 6381–6390 (2002)

    Article  CAS  Google Scholar 

  31. M. Yamaura, R. Camilo, L. Sampaio, M. Macedo, M. Nakamura, H. Toma, Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles. J. Magn. Magn. Mater. 279(2), 210–217 (2004)

    Article  CAS  Google Scholar 

  32. M.N. Sepehr, H. Kazemian, E. Ghahramani, A. Amrane, V. Sivasankar, M. Zarrabi, Defluoridation of water via light weight expanded clay aggregate (LECA): Adsorbent characterization, competing ions, chemical regeneration, equilibrium and kinetic modeling. J. Taiwan Inst. Chem. Eng. 45(4), 1821–1834 (2014)

    Article  CAS  Google Scholar 

  33. B. Saif, C. Wang, D. Chuan, S. Shuang, Synthesis and characterization of Fe3O4 coated on APTES as carriers for morin-anticancer drug. J. Biomater. Nanobiotechnol. 6(04), 267 (2015)

    Article  CAS  Google Scholar 

  34. L. Maurizi, A. Claveau, H. Hofmann, Polymer adsorption on iron oxide nanoparticles for one-step amino-functionalized silica encapsulation. J. Nanomater. 16(1), 239 (2015)

    Google Scholar 

  35. J. Choi, N.S. Wang, V. Reipa, Electrochemical reduction synthesis of photoluminescent silicon nanocrystals. Langmuir 25(12), 7097–7102 (2009)

    Article  CAS  Google Scholar 

  36. D. Enescu, V. Hamciuc, L. Pricop, T. Hamaide, V. Harabagiu, B.C. Simionescu, Polydimethylsiloxane-modified chitosan I. Synthesis and structural characterisation of graft and crosslinked copolymers. J. Polym. Res. 16(1), 73–80 (2009)

    Article  CAS  Google Scholar 

  37. A.H. Basta, W.M. Hosny, H. El-Saied, A.K. Hadi, A., metal chelates with some cellulose derivates; part IV structural chemistry of HEC complexes. Cellulose 3, 1–10 (1996)

    Article  CAS  Google Scholar 

  38. D. Enescu, V. Hamciuc, R. Ardeleanu, M. Cristea, A. Ioanid, V. Harabagiu, B.C. Simionescu, Polydimethylsiloxane modified chitosan. Part III: preparation and characterization of hybrid membranes. Carbohydr. Polym. 76(2), 268–278 (2009)

    Article  CAS  Google Scholar 

  39. H.-Y. Lin, Y.-W. Chen, The mechanism of reduction of cobalt by hydrogen. Mater. Chem. Phys. 85(1), 171–175 (2004)

    Article  CAS  Google Scholar 

  40. J. Vieillard, N. Bouazizi, R. Bargougui, P.N. Fotsing, O. Thoumire, G. Ladam, N. Brun, J.F. Hochepied, E.D. Woumfo, N. Mofaddel, F.L. Derf, A. Azzouz, Metal-inorganic-organic core–shell material as efficient matrices for CO2 adsorption: synthesis, properties and kinetic studies. J. Taiwan Inst. Chem. Eng. (2018) (in press). https://doi.org/10.1016/j.jtice.2018.08.020

    Article  Google Scholar 

  41. R. Bargougui, N. Bouazizi, N. Brun, P.N. Fotsing, O. Thoumire, G. Ladam, E.D. Woumfo, N. Mofaddel, F.L. Derf, J. Vieillard, Improvement in CO2 adsorption capacity of cocoa shell through functionalization with amino groups and immobilization of cobalt nanoparticles. J. Environ. Chem. Eng. 6(1), 325–331 (2018)

    Article  CAS  Google Scholar 

  42. J. Vieillard, N. Bouazizi, R. Bargougui, N. Brun, P. Fotsing Nkuigue, E. Oliviero, O. Thoumire, N. Couvrat, E. Djoufac Woumfo, G. Ladam, N. Mofaddel, A. Azzouz, F. Le Derf, Cocoa shell-deriving hydrochar modified through aminosilane grafting and cobalt particle dispersion as potential carbon dioxide adsorbent. Chem. Eng. J. 342, 420–428 (2018)

    Article  CAS  Google Scholar 

  43. A. Azzouz, N. Platon, S. Nousir, K. Ghomari, D. Nistor, T.C. Shiao, R. Roy, OH-enriched organo-montmorillonites for potential applications in carbon dioxide separation and concentration. Sep. Purif. Technol. 108, 181–188 (2013)

    Article  CAS  Google Scholar 

  44. C. Chen, D.-W. Park, W.-S. Ahn, Surface modification of a low cost bentonite for post-combustion CO2 capture. Appl. Surf. Sci. 283, 699–704 (2013)

    Article  CAS  Google Scholar 

  45. A.V. Arus, M.N. Tahir, R. Sennour, T.C. Shiao, L.M. Sallam, I.D. Nistor, R. Roy, A. Azzouz, Cu0 and Pd0 loaded organo-bentonites as sponge–like matrices for hydrogen reversible capture at ambient conditions. ChemSelect 1(7), 1452–1461 (2016)

    CAS  Google Scholar 

  46. S. Luo, S. Chen, S. Chen, L. Zhuang, N. Ma, T. Xu, Q. Li, X. Hou, Preparation and characterization of amine-functionalized sugarcane bagasse for CO2 capture. J. Environ. Manag. 168, 142–148 (2016)

    Article  CAS  Google Scholar 

  47. N. Bouazizi, D. Barrimo, S. Nousir, R.B. Slama, T. Shiao, R. Roy, A. Azzouz, Metal-loaded polyol-montmorillonite with improved affinity towards hydrogen. J. Energy Inst. 91, 110–119 (2016)

    Article  CAS  Google Scholar 

  48. S. Wang, W. Yao, J. Lin, Z. Ding, X. Wang, Cobalt imidazolate metal–organic frameworks photosplit CO2 under Mild reaction conditions. Angew. Chem. Int. Ed. 53(4), 1034–1038 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mr Antoine Fontaine for his help to improve the quality of some figures. This work was partially supported by the INSA Rouen, Rouen University, the CNRS, Labex SynOrg (ANR-11-LABX-0029), the European Battuta Program, the Normandy region (CBS network), the European Union (FEDER) and the Evreux Portes de Normandie Agglomeration.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the manuscript, and approved of its final version.

Corresponding authors

Correspondence to Julien Vieillard or Nabil Bouazizi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1971 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieillard, J., Bouazizi, N., Fioresi, F. et al. Cobalt nanoparticles embedded into polydimethylsiloxane-grafted cocoa shell: functional agrowaste for CO2 capture. J Mater Sci: Mater Electron 30, 3942–3951 (2019). https://doi.org/10.1007/s10854-019-00679-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00679-5

Navigation