Skip to main content
Log in

Effect of glycine on structural, optical and dielectric properties of solution grown samarium chloride coordinated with salicylic acid

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Samarium chloride coordinated with salicylic acid (SMS) and samarium chloride coordinated with two organic ligands glycine and salicylic acid (SMGS) have been grown by low temperature solution technique i.e., slow evaporation method. The crystalline nature of the material was firstly confirmed by single crystal X-ray diffraction analysis and secondly by powder X-ray diffraction analysis. It has been observed that the material prepared crystallizes in monoclinic system having space group P121/c1. The modes of vibration of different molecular group present in SMS and SMGS have been confirmed by Fourier transform infrared (FTIR) analysis. It indicates the coordination of ligands in complexes i.e., salicylic acid coordinated through oxygen atoms of carbonyl group (C=O) and glycine ligand coordinated through nitrogen atoms. UV–Vis transmittance study analyzes the optical transparency of SMS and SMGS and it has been found that with the incorporation of glycine in SMS transmittance decreases. Moreover, the impact of glycine in SMS single crystal on its various optical parameters such as optical band gap, refractive index and optical conductivity has been calculated. The decrease in the value of optical band gap from 3.43 to 3.29 eV with the incorporation of glycine in SMS has been observed. The calculated values of refractive index at 425 nm for SMS and SMGS complexes are 1.30 and 2.46 respectively and the optimum value of optical conductivity at 425 nm for SMS and SMGS is 4 \(\times\) 105 and 1.4 \(\times\) 107 Sm−1 respectively. Luminescence of Sm3+ ion is strongly sensitized by salicylic acid as compared to glycine thereby fluorescence of the SMGS complex diminished. Decrease in the dielectric constant was observed with the incorporation of glycine in SMS single crystal. Complex electric modulus analysis confirms the non-Debye type of relaxation in both the materials. Activation energy value depends on frequency as well as on glycine coordination in SMS single crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. A. Senthil, P. Ramasamy, S. Verma, J. Crystal Growth 318, 757 (2011)

    Article  Google Scholar 

  2. R.M. Jauhar, S. Kalainathan, P. Murugakoothan, J. Crystal Growth 424, 42 (2015)

    Article  Google Scholar 

  3. L. Jiang, H. Dong, W. Hu, J. Mater. Chem. 20, 4994 (2010)

    Article  Google Scholar 

  4. S. Kumar, B. Kumar, Cryst. Eng. Commun. 20, 624 (2018)

    Article  Google Scholar 

  5. R.B. Ganesh, V. Kumar, K. Meera, N.P. Rajesh, P. Ramasamy, J. Cryst. Growth 282, 429 (2005)

    Article  Google Scholar 

  6. N. Goel, N. Sinha, B. Kumar, Opt. Mater. 35, 479 (2013)

    Article  Google Scholar 

  7. N. Saravanan, S. Santhanakrishnan, S. Suresh, S. Sahaya, J. Dhas, P. Jayaprakash, V. Chithambaram, J. Mater. Sci.: Mater. Electron. 29, 18449 (2018)

    Google Scholar 

  8. R.E. Whan, G.A. Crosby, J. Mol. Spectrosc. 8, 315 (1962)

    Article  Google Scholar 

  9. N. Sabbatini, M. Guardigli, J.M. Lehn, Coord. Chem. Rev. 123, 201 (1993)

    Article  Google Scholar 

  10. K. Manseki, S. Yanagida, Chem. Commun. 12, 1242 (2007)

    Article  Google Scholar 

  11. G. Sharma, A.K. Narula, J. Mater. Sci.: Mater. Electron. 27, 4928 (2016)

    Google Scholar 

  12. M. Hu, L.Y. Yue, E.C. Sanudo, S.M. Fang, J. Coord. Chem. 69, 2164 (2016)

    Article  Google Scholar 

  13. A. Jegatheesan, G. Rajaerajan, Inter. J. Chem. Tech. Res. 8, 572 (2015)

    Google Scholar 

  14. S.A. Avila, A.L. Rajesh, J. Mater. Sci.: Mater. Electron. 28, 10893 (2017)

    Google Scholar 

  15. P. Kumaresan, S.M. Babu, P.M. Anbarasan, Opto. Adv. Mater. 1, 65 (2007)

    Google Scholar 

  16. S. Chennakrishnan, S.M.R. Kumar, D. Sivavishnu, M. Ganapathi, I.V. Potheher, A.M. Vimalan, J. Mater. Sci.: Mater. Electron. 27, 10113 (2016)

    Google Scholar 

  17. M.N. Bhat, S.M. Dharmaprakash, J. Cryst. Growth 242, 245 (2002)

    Article  Google Scholar 

  18. M. Saravana, A. Senthil, S.A. Rajasekar, N. Vijayan, Optik 127, 1463 (2016)

    Article  Google Scholar 

  19. E. Iravani, N. Nami, F. Nabizadeh, E. Bayani, B. Neumuller, Bull. Korean Chem. Soc. 34, 3420 (2013)

    Article  Google Scholar 

  20. R. Vivekanandhan, K. Raju, V. Ravisankar, V. Chithambaran, J. Pure Appl. Math. 115, 281 (2017)

    Google Scholar 

  21. G. Anbazhagan, P.S. Joseph, G. Shankar, Opt. Commun. 291, 304 (2013)

    Article  Google Scholar 

  22. P. Singh, M.M. Abdullah, S. Sagadeva, S. Ikram, J. Mater. Sci.: Mater. Electron. 29, 7904 (2018)

    Google Scholar 

  23. R.M. Jauhar, V. Viswanathan, P. Vivek, G. Vinitha, D. Velmurugan, P. Murugakoothan, RSC Adv. 6, 57977 (2016)

    Article  Google Scholar 

  24. M.L. Gonzalez, M.E.S. Vergara, J.R.A. Baba, M.I.C. Uribe, R.A. Toscano, C.A. Toledano, J. Mater. Chem. C 2, 5607 (2014)

    Article  Google Scholar 

  25. O.G. Abdullah, S.B. Aziz, M.A. Rasheed, Results Phys. 6, 1103 (2016)

    Article  Google Scholar 

  26. C.J. Xu, H. Yang, F. Xie, X.Z. Guo, J. Alloys Compds. 392, 96 (2005)

    Article  Google Scholar 

  27. B. Gao, W. Zhang, Z. Zhang, Q. Lei, J. Lumin. 132, 2005 (2012)

    Article  Google Scholar 

  28. Y. Cui, Y. Yue, G. Qian, B. Chen, Chem. Rev. 112, 1126 (2012)

    Article  Google Scholar 

  29. P. Wang, Y.J. Zhang, J. Qin, Y. Chen, Y. Zhao, J. Mol. Struct. 1083, 95 (2015)

    Article  Google Scholar 

  30. K. Thukral, N. Vijayan, D.H. Sonia, K.K. Maurya, J. Philip, V. Jayaramakrishan. Arab. J. Chem. (2015) https://doi.org/10.1016/j.arabjc.2015.08.022

    Google Scholar 

  31. B. Riscob, M. Shakir, J.K. Sundar, S. Natarajan, M.A. Wahab, G. Bhagavannarayana, Spectrochim. Acta Part A 78, 543 (2011)

    Article  Google Scholar 

  32. M. Banan, R.B. Lal, A. Batra, J. Mater. Sci. 27, 2291 (1992)

    Article  Google Scholar 

  33. R. Muralidharan, R. Mohankumar, R. Dhanasekaran, A.K. Tripathi, R. Jayavel, P. Ramasamy, Mater. Lett. 57, 3291 (2003)

    Article  Google Scholar 

  34. S. Sangeetha, V. Rajendran, J. Mater. Sci.: Mater. Electron. 29, 17093 (2018)

    Google Scholar 

  35. Y. Chen, Y. Liu, B. Gao, C. Zhu, Z. Liu, Crystals 7, 224 (2017)

    Article  Google Scholar 

  36. N.G. McCrum, B.E. Read, G. Williams, Anelastic and dielectric effects in polymeric solids (Wiley, New York, 1967)

    Google Scholar 

  37. A. Shukla, R.N.P. Choudhary, Phys. B 406, 2492 (2011)

    Article  Google Scholar 

  38. S. Thakura, R. Raia, I. Bdikinb, M.A. Valentec, Mater. Res. 19, 1 (2016)

    Article  Google Scholar 

  39. M.A.L. Nobre, S.J. Langfredi, Phys. Chem. Solids 62, 20 (1999)

    Google Scholar 

  40. R.S. Yadav, I. Kuritka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, J. Svec, V. Enev, M. Hajduchova, Adv. Nat. Sci.: Nanosci. Nanotechnol. 8, 1 (2017)

    Google Scholar 

  41. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)

    Article  Google Scholar 

  42. N. Panda, B.N. Parida, R. Padhee, R.N.P. Choudhary, J. Electron. Mater. 44, 4275 (2015)

    Article  Google Scholar 

  43. P.R. Dass, B. Pati, B.C. Suta, R.N.P. Choudhury, J. Mod. Phys. 3, 870 (2012)

    Article  Google Scholar 

  44. S. Upadhyay, A.K. Sahu, D. Kumar, O. Parkash, J. Appl. Phys. 84, 828 (1998)

    Article  Google Scholar 

  45. A.A. Ebnalwaled, Mater. Sci. Eng. B 174, 285 (2010)

    Article  Google Scholar 

  46. D. Schechter, J. Appl. Phys. 61, 591 (1987)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Centre for Nano-science & Technology, Anna University, Chennai for providing facilities for dielectric analysis using their impedance analyzer instrument.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Bamzai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H., Bamzai, K.K. Effect of glycine on structural, optical and dielectric properties of solution grown samarium chloride coordinated with salicylic acid. J Mater Sci: Mater Electron 30, 3833–3846 (2019). https://doi.org/10.1007/s10854-019-00667-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00667-9

Navigation