Skip to main content
Log in

Optical properties of highly luminescent, monodisperse, and ultrastable CdSe/V2O5 core/shell quantum dots for in-vitro imaging

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, a first report on the formation of high-quality CdSe/V2O5 core/shell quantum dots (QDs). A single-source cluster approach has been adopted to synthesize highly luminescent CdSe and CdSe/V2O5 core/shell QDs. X-ray diffraction pattern depicts a crystal structural phase transformation from Zinc blende to Wurzite for core/shell QDs. Steady-state absorption and emission studies indicate a significant red-shift in both absorption and emission peak after shell growth. Formation of core/shell structures have been confirmed by absorption spectra of CdSe (1–12 h) along with TEM images analysis. Raman studies of core/shell QDs shows a lower wave number shift in phonon frequency which is correlated with lattice contraction and indicates the intensive electron interaction between CdSe and V2O5. Biocompatibility test (with A549 cell line) of CdSe and CdSe/V2O5 core/shell QDs have been carried out to know about toxicity of these QDs and results exhibited a noticeable increase in viability of cell lines for core/shell QDs. These highly luminescent, ultrastable core/shell QDs can be used in many applications such as catalysis, solar cell, and cellular imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Bhattacharya, A. Pandey, CuFeS2 quantum dots and highly luminescent CuFeS2 based core/ shell structures: synthesis, tunability, and photophysics. J. Am. Chem. Soc. 138, 10207–10213 (2016)

    Article  Google Scholar 

  2. E. Hofman, R.J. Robinson, Z.J. Li, B. Dzikouski, W. Zhang, Controlled dopant migration in CdS/ZnS core/shell quantum dots. J. Am. Chem. Soc. 139, 8878–8885 (2017)

    Article  CAS  Google Scholar 

  3. W. Zhang, K. Singh, Z. Wang, J.T. Wright, N.S. Dalal, R.W. Meulenberg, G.F. Strouse, Evidence of a ZnCr2Se4 spinal inclusion at the core of a Cr-doped ZnSe quantum dots. J. Am. Chem. Soc. 134, 5577–5585 (2012)

    Article  Google Scholar 

  4. N. Zheng, X.H. Bu, H.W. Lu, Q.C. Zhang, P.Y. Feng, Crystalline superlattices from single-sized quantum dots. J. Am. Chem. Soc. 127, 11963–11965 (2005)

    Article  CAS  Google Scholar 

  5. P. Reiss, M. Protiere, L. Li, Core/shell semiconductor crystal. Small 5, 154–168 (2009)

    Article  CAS  Google Scholar 

  6. M. Zorn, W.K. Bae, J. Kwak, H. Lee, C. Lee, R. Zentel, K. Char, Quantum dot block copolymer hybrids with improved properties and their application to quantum dot, light-emitting devices. ACS Nano 3, 1063–1068 (2009)

    Article  CAS  Google Scholar 

  7. R. Loef, A.J. Houtepen, E. Talgorn, J. Schoonman, A. Goossens, Study of electronic defects in CdSe quantum dots and their involvement in quantum dot solar cells. Nano Lett. 9, 856–859 (2009)

    Article  CAS  Google Scholar 

  8. L.F. Shi, V. De Paoli, N. Rosenzweig, Z. Rosenzweig, Synthesis, and application of quantum dots FRET-based protease sensors. J. Am. Chem. Soc. 128, 10378–10379 (2006)

    Article  CAS  Google Scholar 

  9. B.S. Shah, P.A. Clark, E.K. Moioli, M.A. Stroscio, J.J. Mao, Labeling of mesenchymal stem cells by bioconjugated quantum dots. Nano Lett. 7, 3071–3079 (2007)

    Article  CAS  Google Scholar 

  10. W. Zheng, P. Kumar, A. Washington, Z. Wang, N.S. Dalal, G.F. Strouse, K. Singh, Quantum phase transition from superparamagnetic to quantum superparamagnetic state in ultrasmall Cd1–xCr(II)xSe quantum dots? J. Am. Chem. Soc. 134, 2172–2179 (2011)

    Article  Google Scholar 

  11. M.B. Jr, M. Maronne, P. Gin, S. Weiss, A.P. Alivisators, Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998)

    Article  Google Scholar 

  12. W.C.W. Chan, S. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998)

    Article  CAS  Google Scholar 

  13. Z. Li, W. Wao, L. Kong, Y. Zhao, L. Li, General method for the synthesis of ultrastable core/shell quantum dots by aluminium doping. J. Am. Chem. Soc. 137, 12430–12433 (2015)

    Article  CAS  Google Scholar 

  14. M.A. Hines, P. Guyot-Sionnest, Synthesis, and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100, 468–471 (1996)

    Article  CAS  Google Scholar 

  15. Y.F. Chen, J. Vela, H. Htoon, J.L. Casson, D.J. Werder, D.A. Bussian, V.I. Klimov, J.A. Hollingsworth, “Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc. 130, 5026–5027 (2008)

    Article  CAS  Google Scholar 

  16. B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J. Hermier, B. Dubertret, Towards non-blinking colloidal quantum dots. Nat. Mater. 7, 659–664 (2008)

    Article  CAS  Google Scholar 

  17. A.M. Derfus, W.C.W. Chan, S.N. Bhatia, Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 11–18 (2004)

    Article  CAS  Google Scholar 

  18. R.A. Hardman, Toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 114, 165–172 (2006)

    Article  Google Scholar 

  19. G.N. Guo, W. Liu, J.G. Liang, H.B. Xu, Z.K.P. He, X.L. Yang, Preparation and characterization of novel cdse quantum dots modified with poly(d,l-lactide. Nanopart. Mater. Lett. 60, 2565–2568 (2006)

    Article  CAS  Google Scholar 

  20. C. Wu, H. Wei, B. Ning, Y. Xie, New vanadium oxide nanostructures controlled synthesis and their smart electrical switching. Adv. Mater. 22, 1972–1976 (2010)

    Article  CAS  Google Scholar 

  21. U. Schwingenschlogl, V. Eyert, The vanadium Magneli phases VnO2n–1. Ann. Phys. (Leipzig) 13, 475–510 (2004)

    Article  Google Scholar 

  22. A. Chakrabarti, K. Hermann, R. Druzinic, M. Witko, F. Wagner, M. Petersen, Geometric and electronic structure of vanadium pentoxide: a density functional bulk and surface study. Phys. Rev. B 59, 10583–10590 (1999)

    Article  CAS  Google Scholar 

  23. M.S. Niasari, M.E. Zare, A. Sobhani, Synthesis and characterisation of cadmium selenide nanostructures by simple sonochemical method. Micro Nano Lett. 7, 831–834 (2012)

    Article  Google Scholar 

  24. R. Ghosh Chaudhuri, S. Paria, Core/shell nanoparticles, classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012)

    Article  CAS  Google Scholar 

  25. S.L. Cumberland, K.M. Hanif, A. Javier, G.A. Khitrov, G.F. Strouse, S.M. Woessner, C.S. Yun, Inorganic clusters as single-source precursors for preparation of CdSe, ZnSe, and CdSe/ZnS. Nanomater. Chem. Mater. 14, 1576–1584 (2002)

    Article  CAS  Google Scholar 

  26. C.J. Barrelet, Y. Wu, D.C. Bell, C.M. Lieber, Synthesis of CdS and ZnS nanowires using single-source molecular precursors. J. Am. Chem. Soc. 125, 11498–11499 (2003)

    Article  CAS  Google Scholar 

  27. D. Chen, F. Zhao, H. Qi, M. Rutherford, X. Peng, Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source. Precursor Chem. Mater. 22, 1437–1444 (2010)

    Article  CAS  Google Scholar 

  28. J.J. Li, Y.A. Wang, W.Z. Guo, J.C. Keay, T.D. Mishima, M.B. Johnson, X.G. Peng, Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 125, 12567–12575 (2003)

    Article  CAS  Google Scholar 

  29. A. Sobhani, M. Salavati-, Niasari, Synthesis and characterization of CdSe nanostructures by using a new selenium source: Effect of hydrothermal preparation conditions Mater. Res. Bull. 53, 7–14 (2014)

    Article  CAS  Google Scholar 

  30. A. Sobhani, M. Salavati-Niasari, CdSe nanoparticles: facile hydrothermal synthesis, characterization and optical properties. J. Mater. Sci. Mater. Electron. 26, 6831–6836 (2015)

    Article  CAS  Google Scholar 

  31. S. Jindal, S.M. Giripunje, S.B. Kondawar, P. Koinkar, Green synthesis of CuInS2/ZnS core-shell quantum dots by facile solvothermal route with enhanced optical properties. J. Phys. Chem. Solids 114, 163–172 (2018)

    Article  CAS  Google Scholar 

  32. T.R. Kuo, S.T. Hung, Y.T. Lin, T.L. Chou, M.C. Kuo, Y.P. Kuo, C.C. Chen, Green synthesis of InP/ZnS core/shell quantum dots for application in heavymetal-free light-emitting diodes. Nanoscale Res. Lett. 12, 537 (2017)

    Article  Google Scholar 

  33. I.G. Dance, A. Choy, M.L. Scudder, Syntheses, properties, and molecular and crystal structures of (Me4N)4[E4Mlo(SPh)16] (E = S, Se; M = Zn, Cd): molecular supertetrahedral fragments of the cubic metal chalcogenide lattice. J. Am. Chem. Soc. 106, 6285–6295 (1984)

    Article  CAS  Google Scholar 

  34. P.T.K. Chin, J.W. Stouwdam, A.J. Janssen, Highly luminescent ultranarrow Mn-doped ZnSe nanowires. Nano Lett. 9, 745–750 (2009)

    Article  CAS  Google Scholar 

  35. L.J. Sung, S. Andre, S.M. Andrew, Optical determination of crystal phase in semiconductor nanocrystals. Nat. Commun. 8, 14849 (2017)

    Article  Google Scholar 

  36. S. Udit, A. Vikas, S. Sameer, Wurtzite or zinc blende? Surface decides the crystal structure of nanocrystals. CrystEngComm 15, 5458–5463 (2013)

    Article  Google Scholar 

  37. D. Chen, R. Yi, S. Chen, T. Xu, M.L. Gordin, D. Lv, D. Wang, Solvothermal synthesis of V2O5/graphene nanocomposites for high performance lithium ion batteries. Mater. Sci. Eng. B 185, 7–12 (2014)

    Article  Google Scholar 

  38. A.I. Ekimov, F. Hache, M.C. Schanne-Klein, D. Ricard, C. Flytzains, I.A. Kudryavtsev, T.V. Yazeva, A.V. Rodina, A.L. Efros, Absorption and intensity-dependent photoluminescence measurements on cdse quantum dots: assignment of the first electronic transitions. J. Opt. Soc. Am. B 10, 100–107 (1993)

    Article  CAS  Google Scholar 

  39. A. Minoto, F. Todescato, I. Fortunati, R. Singnorini, J.J. Jasieniak, R. Bozio, Role of core–shell interfaces on exciton recombination in CdSe–CdxZn1–xS quantum dots. J. Phys. Chem. C 118, 24117–24126 (2014)

    Article  Google Scholar 

  40. R. Xie, U. Kolb, J. Li, T. Basche, A. Mews, Synthesis, and characterization of highly luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. J. Am. Chem. Soc. 127, 7480–7488 (2005)

    Article  CAS  Google Scholar 

  41. J. Jasieniak, L. Smith, J.V. Embden, P. Mulvaney, Re-examination of the size-dependent absorption properties of CdSe quantum dots. J. Phy. Chem. Soc. 113, 19468–19474 (2009)

    CAS  Google Scholar 

  42. A.M. Smith, S. Nie, Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc. Chem. Res. 43, 190–200 (2010)

    Article  CAS  Google Scholar 

  43. H. Zhu, N. Song, T. Lian, Controlling charge separation and recombination rates in CdSe/ZnS type I core-shell quantum dots by shell thicknesses. J. Am. Chem. Soc. 132, 15038–15045 (2010)

    Article  CAS  Google Scholar 

  44. D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase, H. Weller, Highly luminescent monodisperse CdSe and CdSe/ZnS Nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett. 1, 207–211 (2001)

    Article  CAS  Google Scholar 

  45. B.O. Dabbousi, J.R. Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, M. G. Bawendi, (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463–9475 (1997)

    Article  CAS  Google Scholar 

  46. S.A. Ivanov, A. Piryatinski, J. Nanda, S. Tretiak, K.R. Zavadil, W.O. Wallace, D. Werder, V.I. Klimov, Type-II core/shell CdS/ZnSe nanocrystals: synthesis, electronic structures, and spectroscopic properties. J. Am. Chem. Soc. 129, 11708–11719 (2007)

    Article  CAS  Google Scholar 

  47. P. Mukharjee, S.J. Lim, T.P. Wrobel, R. Bhargava, A.M. Smith, Measuring and predicting the internal structure of semiconductor nanocrystals through raman spectroscopy. J. Am. Chem. Soc. 138, 10887–10896 (2016)

    Article  Google Scholar 

  48. G. Gouadec, P. Colomban, Raman spectroscopy of nanomaterials: how spectra relate to disorder, particle size, and mechanical properties. Prog. Cryst. Growth Charac. 53, 1–56 (2007)

    Article  CAS  Google Scholar 

  49. L. Lu, X.L. Xu, W.T. Liang, H.F. Lu, Raman analysis of CdSe/CdS core-shell quantum dots with different CdS shell thickness. J. Phys. Condens. Matter 19, 406221 (2007)

    Article  Google Scholar 

  50. R.W. Meulenberg, T. Jennings, G.F. Strouse, Compressive and tensile stress in colloidal semiconductor quantum dots. Phys. Rev. B 70, 235311–235315 (2004)

    Article  Google Scholar 

  51. C.T. Giner, A. Debernardi, M. Cardona, A.I. Ekimov, E.M. Proupin, Optical vibrons in CdSe dots and dispersion relation of the bulk material. Phys. Rev. B 57, 4664–4669 (1998)

    Article  Google Scholar 

  52. G. Scamarcio, M. Lugara, D. Manno, Size-dependent lattice contraction in CdS & Se nanocrystals embedded in glass observed by raman scattering. Phy. Rev. B 45, 13792–13795 (1992)

    Article  CAS  Google Scholar 

  53. J.Y. Zhang, X.Y. Wang, M. Xiao, L. Qu, X. Peng, Lattice contraction in free-standing CdSe nanocrystals. Phys. Rev. Lett. 81, 2076–2078 (2002)

    CAS  Google Scholar 

  54. P. Verma, L. Gupta, S.C. Abbi, K.P. Jain, Confinement effect on the electronic and vibronic properties of CdS0.65Se0.35 nanoparticles grown by thermal annealing. J. Appl. Phys. 88, 4109–4116 (2000)

    Article  CAS  Google Scholar 

  55. L.E. Rikans, T. Yamano, Mechanisms of cadmium-mediated acute hepatotoxicity. J. Biochem.Toxicol. 14, 110–117 (2000)

    Article  CAS  Google Scholar 

  56. L.S. Rhoads, W.T. Silkworth, M.L. Roppolo, M.S. Whittingham, Cytotoxicity of nanostructured vanadium oxide on human cells in vitro. Toxicol. In Vitro 24, 292–296 (2010)

    Article  CAS  Google Scholar 

  57. K. Pathakoti, H.M. Hwang, H. Xu, Z.P. Aguilar, A. Wang, In vitro cytotoxicity of CdSe/ZnS quantum dots with different surface coatings to human keratinocytes HaCaT cells. J. Environ. Sci. 25, 163–171 (2013)

    Article  CAS  Google Scholar 

  58. Y. Wang, B. Si, S. Lu, X. Ma, E. Liu, J. Fan, X. Li, X. Hu, Effective improvement in optical properties of colloidal CdTe@ZnS quantum dots synthesized from aqueous solution. Nanotechnology 27, 365707 (2016)

    Article  Google Scholar 

  59. V. Brunetti, H. Chibli, R. Fiammengo, A. Galeone, M.A. Malvindi, G. Vecchio, R. Cingolani, J.L. Nadeau, P.P. Pompa, InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: in vitro and in vivo toxicity assessment. Nanoscale 5, 307–317 (2013)

    Article  CAS  Google Scholar 

  60. A.M. Evangelou, Vanadium in cancer treatment. Oncology/Hematology 42, 249–265 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to SERB, Department of Science and Technology, Govt. of India to provide financial assistance under Project No. EEQ/2016/000652 and PURSE grant. Authors are thankful to UPE-II for providing funding under Project Nos. 58 & 172. Further, AIRF-JNU is heartfully acknowledged for providing characterization facilities. ANY is thankful to UGC, New Delhi for providing fellowship.

Author information

Authors and Affiliations

Authors

Contributions

ANY carried the synthesis, characterizations and wrote the manuscript with the help of AKS. KS conceived the idea about synthesis, characterization, assisted in interpretation, conclusions and in the writing of the manuscript. PPS and PRS carried the biocompatibility part and help in the discussion. All authors have given approval to final version of the manuscript.

Corresponding author

Correspondence to Kedar Singh.

Ethics declarations

Competing interest

The authors declare no competing financial interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2840 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A.N., Singh, A.K., Sharma, P.P. et al. Optical properties of highly luminescent, monodisperse, and ultrastable CdSe/V2O5 core/shell quantum dots for in-vitro imaging. J Mater Sci: Mater Electron 29, 18650–18659 (2018). https://doi.org/10.1007/s10854-018-9984-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9984-1

Navigation