Skip to main content
Log in

Influence of stacking order and intermediate phase at low temperature on Cu2ZnSnS4 thin film formation for solar cell

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A stacking order of a precursor is one of the important factors that affects the quality of Cu2ZnSnS4 (CZTS) thin film. Understanding of the intermediate phase formation and its reaction mechanism can contribute to the design of a precursor to enhance the performance of CZTS solar cell. In this work, three precursors such as Zn/SnS/Cu, SnS/Cu/Zn, and SnS/Zn/Cu were designed based on previous studies. These precursors were treated for sulfurization process at 560 °C, and annealed at 300 °C for 30 min to investigate the reaction of intermediate phases. The annealed thin film from Zn/SnS/Cu precursor exhibited crystallized and uniform intermediate ternary phase of Cu2SnS3. This easy and uniform transformation to Cu2SnS3 phase as a whole at low temperature using Zn/SnS/Cu precursor resulted in relatively smooth surface of CZTS thin film after sulfurization at high temperature. In contrast, CZTS thin film from SnS/Cu/Zn or SnS/Zn/Cu precursor showed a rough surface morphology with loss of Zn content. A rough surface will degrade the contact between CZTS absorber and CdS buffer layers, resulting in decreased a device performance. Accordingly, CZTS solar cell device fabricated from Zn/SnS/Cu precursor achieved improved efficiency of 4.20%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T.K. Todorov, J. Tang, S. Bag et al., Adv. Energy Mater. 3, 34 (2013)

    Article  CAS  Google Scholar 

  2. D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, S. Guha, Sol. Energy Mater. Sol. Cells 95, 1421 (2011)

    Article  CAS  Google Scholar 

  3. S. Ahn, S. Jung, J. Gwak et al., Appl. Phys. Lett. 97, 021905 (2010)

    Article  Google Scholar 

  4. W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510 (1961)

    Article  CAS  Google Scholar 

  5. W. Wang, M.T. Winkler, O. Gunawan et al., Adv. Energy Mater. 4, 1301465 (2014)

    Article  Google Scholar 

  6. S. Oueslati, G. Brammertz, M. Buffiere et al., Thin Solid Films 582, 224 (2015)

    Article  CAS  Google Scholar 

  7. G.K. Dalapati, S. Zhuk, S. Masudy-Panah et al., Sci. Rep. 7, 1350 (2017)

    Article  Google Scholar 

  8. Y.-P. Lin, T.-E. Hsieh, Y.-C. Chen, K.-P. Huang, Sol. Energy Mater. Sol. Cells 162, 55 (2017)

    Article  CAS  Google Scholar 

  9. T. Sánchez, X. Mathew, N. Mathews, J. Cryst. Growth 445, 15 (2016)

    Article  Google Scholar 

  10. B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Prog. Photovolt. Res. Appl. 21, 72 (2013)

    Article  CAS  Google Scholar 

  11. X. Jin, C. Yuan, G. Jiang, W. Liu, C. Zhu, Mater. Lett. 175, 180 (2016)

    Article  CAS  Google Scholar 

  12. A. Tang, J. Liu, J. Ji, M. Dou, Z. Li, F. Wang, Appl. Surf. Sci. 383, 253 (2016)

    Article  CAS  Google Scholar 

  13. M. Khalil, O. Atici, A. Lucotti, S. Binetti, A. Le Donne, L. Magagnin, Appl. Surf. Sci. 379, 91 (2016)

    Article  CAS  Google Scholar 

  14. W. Dang, X. Ren, W. Zi, L. Jia, S.F. Liu, J. Alloys Compd. 650, 1 (2015)

    Article  CAS  Google Scholar 

  15. S. Kermadi, S. Sali, F.A. Ameur et al., Mater. Chem. Phys. 169, 96 (2016)

    Article  CAS  Google Scholar 

  16. D.B. Khadka, S. Kim, J. Kim, RSC Adv. 6, 37621 (2016)

    Article  CAS  Google Scholar 

  17. T.H. Nguyen, W. Septina, S. Fujikawa, F. Jiang, T. Harada, S. Ikeda, RSC Adv. 5, 77565 (2015)

    Article  CAS  Google Scholar 

  18. R. Liu, M. Tan, X. Zhang, J. Chen, S. Song, W. Zhang, J. Alloys Compd. 655, 124 (2016)

    Article  CAS  Google Scholar 

  19. N.K. Youn, G.L. Agawane, D. Nam et al., Int. J. Energy Res. 40, 662 (2016)

    Article  CAS  Google Scholar 

  20. A. Safdar, M. Islam, M.A. Akram, M. Mujahid, Y. Khalid, S.I. Shah, J. Mater. Eng. Perform. 25, 457 (2016)

    Article  CAS  Google Scholar 

  21. K.-J. Yang, D.-H. Son, S.-J. Sung et al., J. Mater. Chem. A 4, 10151 (2016)

    Article  CAS  Google Scholar 

  22. A. Khalkar, K.-S. Lim, S.-M. Yu, D.-W. Shin, T.-S. Oh, J.-B. Yoo, Int. J. Photoenergy 2015, 1 (2015)

    Article  Google Scholar 

  23. X. Lv, Q. Liu, C. Zhu, Z. Wang, Mater. Lett. 180, 68 (2016)

    Article  CAS  Google Scholar 

  24. L. Du, W. Zhao, Y. Sun et al., J. Alloys Compd. 737, 184 (2018)

    Article  CAS  Google Scholar 

  25. Y.-P. Lin, Y.-F. Chi, T.-E. Hsieh, Y.-C. Chen, K.-P. Huang, J. Alloys Compd. 654, 498 (2016)

    Article  CAS  Google Scholar 

  26. K.-J. Yang, J.-H. Sim, D.-H. Son et al., Nano Energy 35, 52 (2017)

    Article  CAS  Google Scholar 

  27. W.-C. Chen, C.-Y. Chen, V. Tunuguntla et al., Nano Energy 30, 762 (2016)

    Article  Google Scholar 

  28. A. Fairbrother, L. Fourdrinier, X. Fontané et al., J. Phys. Chem. 118, 17291 (2014)

    CAS  Google Scholar 

  29. R. Chalapathy, G.S. Jung, B.T. Ahn, Sol. Energy Mater. Sol. Cells 95, 3216 (2011)

    Article  CAS  Google Scholar 

  30. H. Yoo, J. Kim, Thin Solid Films 518, 6567 (2010)

    Article  CAS  Google Scholar 

  31. S.M. Yu, K.-S. Lim, D.-W. Shin, T.-S. Oh, J.-B. Yoo, J. Mater. Sci.: Mater. Electron. 28, 5696 (2017)

    CAS  Google Scholar 

  32. K.-S. Lim, S.-M. Yu, A.R. Khalkar et al., J. Alloys Compd. 650, 641 (2015)

    Article  CAS  Google Scholar 

  33. J.J. Scragg, J.T. Watjen, M. Edoff, T. Ericson, T. Kubart, C. Platzer-Björkman, J. Am. Chem. Soc. 134, 19330 (2012)

    Article  CAS  Google Scholar 

  34. X. Yin, C. Tang, L. Sun, Z. Shen, H. Gong Chem. Mater. 26, 2005 (2014)

    Article  CAS  Google Scholar 

  35. H. Yoo, J. Kim, L. Zhang, Curr. Appl. Phys. 12, 1052 (2012)

    Article  Google Scholar 

  36. M. Dimitrievska, A. Fairbrother, A. Pérez-Rodríguez, E. Saucedo, V. Izquierdo-Roca, Acta Mater. 70, 272 (2014)

    Article  CAS  Google Scholar 

  37. O. Vigil-Galán, M. Espíndola-Rodríguez, M. Courel et al., Sol. Energy Mater. Sol. Cells 117, 246 (2013)

    Article  Google Scholar 

  38. P. Fernandes, P. Salomé, A. Da Cunha, J. Phys. D 43, 215403 (2010)

    Article  Google Scholar 

  39. H. Yoo, J. Kim, Sol. Energy Mater. Sol. Cells 95, 239 (2011)

    Article  CAS  Google Scholar 

  40. D.B. Mitzi, O. Gunawan, T.K. Todorov, D.A.R. Barkhouse, Philos. Trans. R. Soc. A 371, 20110432 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by “Human Resources Program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20174030201800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Beom Yoo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1564 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, KS., Yu, SM., Nam, KB. et al. Influence of stacking order and intermediate phase at low temperature on Cu2ZnSnS4 thin film formation for solar cell. J Mater Sci: Mater Electron 29, 18397–18403 (2018). https://doi.org/10.1007/s10854-018-9954-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9954-7

Navigation