Abstract
CoxZn1−xFe2O4 (x = 0, 0.1, 0.2, 0.3, 0.4) nanopowders were fabricated via auto-combustion synthesis followed by calcined treatment. The structural, morphological, compositional and magnetic properties of the as-synthesized samples were decided by X-ray diffraction (XRD), field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, specific surface area and Physical Property Measurement System analyses, respectively. The XRD patterns revealed all annealed cobalt substituted zinc nanoferrites display a single phase cubic spinel structure, the decrease in lattice constant with increasing Co2+ ions concentration is related to the lattice shrinkage originated from the replacement of Zn2+ ions (ionic radii of 0.82 Å) by Co2+ ions (ionic radii of 0.78 Å); the increase of crystallite size with increasing Co2+ ions content can be attributed to the less exothermic for the formation of cobalt ferrite than that for zinc ferrite. The M–H curves revealed that there are unsaturated magnetization and negligible hysteresis loops for all samples with lower cobalt concentration (x = 0, 0.1, 0.2, and 0.3), implying a superparamagnetic behavior; while the Co0.4Zn0.6Fe2O4 nanoparticles (x = 0.4) show ferromagnetism at room temperature. The M–T relations inferred the substitution of cobalt ions can remarkably enhance Curie temperature of the as-prepared Co–Zn ferrite nanoparticles. At room temperature lower cobalt-substituted zinc nanoferrites tend to show superparamagnetism while higher cobalt-substituted zinc nanoferrites prefer to present ferromagnetism.
Similar content being viewed by others
References
A.R. Shyam, R. Dwivedi, V.S. Reddy, K.V.R. Chary, R. Prasad, Vapour phase methylation of pyridine with methanol over the Zn1–xMnxFe2O4 (x = 0, 0.25, 0.50, 0.75 and 1) ferrite system. Green Chem. 4, 558–561 (2002)
Y. Köseoǧlu, H. Kavas, Size and surface effects on magnetic properties of Fe3O4 nanoparticles. J. Nanosci. Nanotechnol. 8, 584–590 (2008)
S. Deka, P.A. Joy, Enhanced permeability and dielectric constant of NiZn ferrite synthesized in nanocrystalline form by a combustion method. J. Am. Ceram. Soc. 90, 1494–1499 (2007)
K. Khan, A. Maqsood, M.A. Rehman, M.A. Malik, M. Akram, Structural, dielectric, and magnetic characterization ofnanocrystalline Ni–Co ferrites. J. Supercond. Nov. Magn. 25, 2707–2711 (2012)
T.L. Phan, N. Tran, D.H. Kim, N.T. Dang, D.H. Manh, T.N. Bach, C.L. Liu, B.W. Lee, Magnetic and magnetocaloric properties of Zn1–xCoxFe2O4 nanoparticles. J. Electron. Mater. 46, 4214–4226 (2017)
C.N. Chinnasamy, B. Jeyadevan, O.P. Perez, K. Shinoda, K. Tohji, A. Kasuya, Growth dominant co-precipitation process to achieve high coercivity at room temperature in CoFe2O4 nanoparticles. IEEE Trans. Magn. 38, 2640–2642 (2002)
B. Pourgolmohammad, S.M. Masoudpanah, M.R. Aboutalebi, Synthesis of CoFe2O4 powders with high surface area by solution combustion method: effect of fuel content and cobalt precursor. Ceram. Int. 43, 3797–3803 (2017)
C. Singh, S. Jauhar, V. Kumar, J. Singh, S. Singhal, Synthesis of zinc substituted cobalt ferrites via reverse micelle technique involving in situ template formation: a study on their structural, magnetic, optical and catalytic properties. Mater. Chem. Phys. 156, 188–197 (2015)
M. Atif, M. Nadeem, Sol-gel synthesis of nanocrystalline Zn1–xNixFe2O4 ceramics and its structural, magnetic and dielectric properties. J. Sol-Gel. Sci. Technol. 72, 615–626 (2014)
Y.P. Zhang, S.H. Lee, K.R. Reddy, A.I. Gopalan, K.P. Lee, Synthesis and characterization of core-shell SiO2 nanoparticles/poly (3-aminophenylboronic acid) composites. J. Appl. Polym. Sci. 104, 2743–2750 (2007)
K.R. Reddy, K.P. Lee, A.I. Gopalan, Self-assembly directed synthesis of poly (ortho-toluidine)-metal (gold and palladium) composite nanospheres. J. Nanosci. Nanotechnol. 7, 3117–3125 (2007)
S. Kim, M. Kim, Y.K. Kim, S.H. Hwang, S.K. Lim, Core–shell-structured carbon nanofiber-titanate nanotubes with enhanced photocatalytic activity. Appl. Catal. B 148–149, 170–176 (2014)
K.R. Reddy, V.G. Gomes, M. Hassan, Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis. Mater. Res. Express 1, 015012 (2014)
M.S. Arif Sher Shah, K. Zhang, A.R. Park, K.S. Kim, N.G. Park, J.H. Park, P.J. Yoo, Single-step solvothermal synthesis of mesoporous Ag-TiO2-reduced graphene oxide ternary composites with enhanced photocatalytic activity. Nanoscale 5, 5093–5101 (2013)
T. Lu, R. Zhang, C. Hu, F. Chen, S. Duo, Q. Hu, TiO2-graphene composites with exposed {001} facets produced by a one-pot solvothermal approach for high performance photocatalyst. Phys. Chem. Chem. Phys. 15, 12963–12970 (2013)
K.R. Reddy, K.P. Lee, A.I. Gopalan, M.S. Kim, A. Md Showkat, Y.C. Nho, Synthesis of metal (Fe or Pd)/alloy (Fe–Pd)-nanoparticles-embedded multiwall carbon nanotube/sulfonated polyaniline composites by γ irradiation. J. Polym. Sci. A 44, 3355–3364 (2006)
K.R. Reddya, K.P. Lee, A.I. Gopalan, Self-assembly approach for the synthesis of electro-magnetic functionalized Fe3O4/polyaniline nanocomposites: effect of dopant on the properties. Colloid Surf. A 320, 49–56 (2008)
D.M. Jnaneshwara, D.N. Avadhani, B. Daruka Prasad, B.M. Nagabhushana, H. Nagabhushana, S.C. Sharma, S.C. Prashantha, C. Shivakumara, Effect of zinc substitution on the nanocobalt ferrite powders for nanoelectronic devices. J. Alloys Compd. 587, 50–58 (2014)
I. Sharifi, H. Shokrollahi, Nanostructural, magnetic and Mössbauer studies of nanosized Co1 – xZnxFe2O4 synthesized by co-precipitation. J. Magn. Magn. Mater. 324, 2397–2403 (2012)
K.H. Wu, Y.C. Chang, G.P. Wang, Preparation of NiZn ferrite/SiO2 nanocomposite powders by sol–gel auto-combustion method. J. Magn. Magn. Mater. 269(2), 150–155 (2004)
G. Vaidyanathan, S. Sendhilnathan, Characterization of Co1–xZnxFe2O4 nanoparticles synthesized by co-precipitation method. Physica B 403, 2157–2167 (2008)
I. Sharifi, H. Shokrollahi, S. Amiri, Ferrite-based magnetic nanofluids used in hyperthermia applications. J. Magn. Magn. Mater. 324, 903–915 (2012)
K. Sreekumar et al., A comparison on the catalytic activity of Zn1–xCoxFe2O4 (x = 0, 0.2, 0.5, 0.8 and 1.0)-type ferrospinels prepared via. A low temperature route for the alkylation of aniline and phenol using methanol as the alkylating agent. J. Appl. Catal. A 230(1–2), 245 (2002)
K. Sreekumar, T.M. Jyothi, T. Mathew et al., Selective N-methylation of aniline with dimethyl carbonate over Zn1–xCoxFe2O4 (x = 0, 0.2, 0.5, 0.8 and 1.0) type systems. J. Mol. Catal. A 159(2), 327 (2000)
A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan, Solution combustion synthesis of nanoscale materials. Chem. Rev. 116, 14493–14586 (2016)
P. Erri, P. Pranda, A. Varma, Oxidizer–fuel interactions in aqueous combustion synthesis. 1. iron(III) nitrate–model fuels. Ind. Eng. Chem. Res. 43, 3092–3096 (2004)
M.S. Anwar, F. Ahmed, B.H. Koo, Enhanced relative cooling power of Ni1–xZnxFe2O4 (0.0 ≤ x ≤ 0.7) ferrites. Acta Mater. 71, 100–107 (2014)
Y. Köseoǧlu, F. Alan, M. Tan, R. Yilgin, M. Öztürk, Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceram. Int. 38, 3625–3634 (2012)
L.N. Anh, T.T. Loan, N.P. Duong, D.T.T. Nguyet, T.D. Hien, Single phase formation, cation distribution, and magnetic characterization of coprecipitated nickel-zinc ferrites. Anal. Lett. 48, 1965–1978 (2015)
R.C. Kambale, P.A. Shaikh, S.S. Kamble, Y.D. Kolekar, Effect of cobalt substitution on structural, magnetic and electric properties of nickel ferrite. J. Alloys Compd. 478, 599–603 (2009)
M. Hashim, Alimuddin, S. Kumar, S.E. Shirsath, R.K. Kotnala, H. Chung, R. Kumar, Structural properties and magnetic interactions in Ni0.5Mg0.5Fe2–xCrxO4 (0 ≤ x ≤ 1) ferrite nanoparticles. Powder Technol. 229, 37–44 (2012)
E. Smidt, K. Meissl, The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Manag. 27, 268 (2007)
A.M. Wahba, M.B. Mohamed, Structural, magnetic and dielectric properties of nanocrystalline Cr-substituted Co0.8Ni0.2Fe2O4 ferrite. Ceram. Int. 40, 6127 (2014)
M.R. Loghman-Estarki, S. Torkian, R.A. Rastabi, A. Ghasemi, Effect of annealing temperature and copper mole ratio on the morphology, structure and magnetic properties of Mg0.5–xCuxZn0.5Fe2O4 nanoparticles prepared by the modified Pechini method. J. Magn. Magn. Mater. 442, 163–175 (2017)
A.R. Rouhani, A.H. Esmaeil-Khanian, F. Davar, S. Hasani, The effect of agarose content on the morphology, phase evolution, and magnetic properties of CoFe2O4 nanoparticles prepared by sol-gel autocombustion method. Int. J. Appl. Ceram. Technol. 15, 758–765 (2018)
L.D. Zhang, J.M. Mou, Nanostructured Materials (in Chinese) (Science Press, Beijing, 2001), pp. 148–152 (in Chinese)
M. Sertkol, Y. Köseoǧlu, A. Baykal, H. Kavasa, A.C. Başaran, Synthesis and magnetic characterization of Zn0.6Ni0.4Fe2O4 nanoparticles via a polyethylene glycol-assisted hydrothermal route. J. Magn. Magn. Mater. 321, 157–162 (2009)
K.R. Reddy, W. Park, B.C. Sin, J. Noh, Y. Lee, Synthesis of electrically conductive and superparamagnetic monodispersed iron oxide-conjugated polymer composite nanoparticles by in situ chemical oxidative polymerization. J. Colloid Interface Sci. 335, 34–39 (2009)
K.R. Reddy, K.P. Lee, J.Y. Kim, Y. Lee, Self-assembly and graft polymerization route to monodispersed Fe3O4@SiO2-polyaniline core-shell composite nanoparticles: physical properties. J. Nanosci. Nanotechnol. 8, 5632–5639 (2008)
Y. Köseoǧlu, A. Baykal, F. Gözüak, H. Kavas, Structural and magnetic properties of CoxZn1–xFe2O4 nanocrystals synthesized by microwave method. Polyhedron 28, 2887–2892 (2009)
R.H. Kodama, A.E. Berkowitz, E.J. McNiff, S. Foner, Surface spin disorder in NiFe2O4 nanoparticles. Phys. Rev. Lett. 77, 394–397 (1996)
Acknowledgements
This work is supported by National Natural Science Foundation of China (No. 51571152), Research Fund for the Key Scientific Program of Higher Education of He’nan Province of China (No. 17B430006), Research fund of He’nan Provincial Training Program of Innovation and Entrepreneurship for Undergraduates (No. 201713503002), Research fund of Xinyang College Training Program of Innovation and Entrepreneurship for Undergraduates (No. CX20170003).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Feng, J., Xiong, R., Liu, Y. et al. Preparation of cobalt substituted zinc ferrite nanopowders via auto-combustion route: an investigation to their structural and magnetic properties. J Mater Sci: Mater Electron 29, 18358–18371 (2018). https://doi.org/10.1007/s10854-018-9950-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-018-9950-y