Skip to main content
Log in

Preparation of cobalt substituted zinc ferrite nanopowders via auto-combustion route: an investigation to their structural and magnetic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CoxZn1−xFe2O4 (x = 0, 0.1, 0.2, 0.3, 0.4) nanopowders were fabricated via auto-combustion synthesis followed by calcined treatment. The structural, morphological, compositional and magnetic properties of the as-synthesized samples were decided by X-ray diffraction (XRD), field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, specific surface area and Physical Property Measurement System analyses, respectively. The XRD patterns revealed all annealed cobalt substituted zinc nanoferrites display a single phase cubic spinel structure, the decrease in lattice constant with increasing Co2+ ions concentration is related to the lattice shrinkage originated from the replacement of Zn2+ ions (ionic radii of 0.82 Å) by Co2+ ions (ionic radii of 0.78 Å); the increase of crystallite size with increasing Co2+ ions content can be attributed to the less exothermic for the formation of cobalt ferrite than that for zinc ferrite. The MH curves revealed that there are unsaturated magnetization and negligible hysteresis loops for all samples with lower cobalt concentration (x = 0, 0.1, 0.2, and 0.3), implying a superparamagnetic behavior; while the Co0.4Zn0.6Fe2O4 nanoparticles (x = 0.4) show ferromagnetism at room temperature. The M–T relations inferred the substitution of cobalt ions can remarkably enhance Curie temperature of the as-prepared Co–Zn ferrite nanoparticles. At room temperature lower cobalt-substituted zinc nanoferrites tend to show superparamagnetism while higher cobalt-substituted zinc nanoferrites prefer to present ferromagnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.R. Shyam, R. Dwivedi, V.S. Reddy, K.V.R. Chary, R. Prasad, Vapour phase methylation of pyridine with methanol over the Zn1–xMnxFe2O4 (x = 0, 0.25, 0.50, 0.75 and 1) ferrite system. Green Chem. 4, 558–561 (2002)

    Article  CAS  Google Scholar 

  2. Y. Köseoǧlu, H. Kavas, Size and surface effects on magnetic properties of Fe3O4 nanoparticles. J. Nanosci. Nanotechnol. 8, 584–590 (2008)

    Article  Google Scholar 

  3. S. Deka, P.A. Joy, Enhanced permeability and dielectric constant of NiZn ferrite synthesized in nanocrystalline form by a combustion method. J. Am. Ceram. Soc. 90, 1494–1499 (2007)

    Article  CAS  Google Scholar 

  4. K. Khan, A. Maqsood, M.A. Rehman, M.A. Malik, M. Akram, Structural, dielectric, and magnetic characterization ofnanocrystalline Ni–Co ferrites. J. Supercond. Nov. Magn. 25, 2707–2711 (2012)

    Article  CAS  Google Scholar 

  5. T.L. Phan, N. Tran, D.H. Kim, N.T. Dang, D.H. Manh, T.N. Bach, C.L. Liu, B.W. Lee, Magnetic and magnetocaloric properties of Zn1–xCoxFe2O4 nanoparticles. J. Electron. Mater. 46, 4214–4226 (2017)

    Article  CAS  Google Scholar 

  6. C.N. Chinnasamy, B. Jeyadevan, O.P. Perez, K. Shinoda, K. Tohji, A. Kasuya, Growth dominant co-precipitation process to achieve high coercivity at room temperature in CoFe2O4 nanoparticles. IEEE Trans. Magn. 38, 2640–2642 (2002)

    Article  CAS  Google Scholar 

  7. B. Pourgolmohammad, S.M. Masoudpanah, M.R. Aboutalebi, Synthesis of CoFe2O4 powders with high surface area by solution combustion method: effect of fuel content and cobalt precursor. Ceram. Int. 43, 3797–3803 (2017)

    Article  CAS  Google Scholar 

  8. C. Singh, S. Jauhar, V. Kumar, J. Singh, S. Singhal, Synthesis of zinc substituted cobalt ferrites via reverse micelle technique involving in situ template formation: a study on their structural, magnetic, optical and catalytic properties. Mater. Chem. Phys. 156, 188–197 (2015)

    Article  CAS  Google Scholar 

  9. M. Atif, M. Nadeem, Sol-gel synthesis of nanocrystalline Zn1–xNixFe2O4 ceramics and its structural, magnetic and dielectric properties. J. Sol-Gel. Sci. Technol. 72, 615–626 (2014)

    Article  CAS  Google Scholar 

  10. Y.P. Zhang, S.H. Lee, K.R. Reddy, A.I. Gopalan, K.P. Lee, Synthesis and characterization of core-shell SiO2 nanoparticles/poly (3-aminophenylboronic acid) composites. J. Appl. Polym. Sci. 104, 2743–2750 (2007)

    Article  CAS  Google Scholar 

  11. K.R. Reddy, K.P. Lee, A.I. Gopalan, Self-assembly directed synthesis of poly (ortho-toluidine)-metal (gold and palladium) composite nanospheres. J. Nanosci. Nanotechnol. 7, 3117–3125 (2007)

    Article  CAS  Google Scholar 

  12. S. Kim, M. Kim, Y.K. Kim, S.H. Hwang, S.K. Lim, Core–shell-structured carbon nanofiber-titanate nanotubes with enhanced photocatalytic activity. Appl. Catal. B 148–149, 170–176 (2014)

    Article  Google Scholar 

  13. K.R. Reddy, V.G. Gomes, M. Hassan, Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis. Mater. Res. Express 1, 015012 (2014)

    Article  Google Scholar 

  14. M.S. Arif Sher Shah, K. Zhang, A.R. Park, K.S. Kim, N.G. Park, J.H. Park, P.J. Yoo, Single-step solvothermal synthesis of mesoporous Ag-TiO2-reduced graphene oxide ternary composites with enhanced photocatalytic activity. Nanoscale 5, 5093–5101 (2013)

    Article  CAS  Google Scholar 

  15. T. Lu, R. Zhang, C. Hu, F. Chen, S. Duo, Q. Hu, TiO2-graphene composites with exposed {001} facets produced by a one-pot solvothermal approach for high performance photocatalyst. Phys. Chem. Chem. Phys. 15, 12963–12970 (2013)

    Article  CAS  Google Scholar 

  16. K.R. Reddy, K.P. Lee, A.I. Gopalan, M.S. Kim, A. Md Showkat, Y.C. Nho, Synthesis of metal (Fe or Pd)/alloy (Fe–Pd)-nanoparticles-embedded multiwall carbon nanotube/sulfonated polyaniline composites by γ irradiation. J. Polym. Sci. A 44, 3355–3364 (2006)

    Article  CAS  Google Scholar 

  17. K.R. Reddya, K.P. Lee, A.I. Gopalan, Self-assembly approach for the synthesis of electro-magnetic functionalized Fe3O4/polyaniline nanocomposites: effect of dopant on the properties. Colloid Surf. A 320, 49–56 (2008)

    Article  Google Scholar 

  18. D.M. Jnaneshwara, D.N. Avadhani, B. Daruka Prasad, B.M. Nagabhushana, H. Nagabhushana, S.C. Sharma, S.C. Prashantha, C. Shivakumara, Effect of zinc substitution on the nanocobalt ferrite powders for nanoelectronic devices. J. Alloys Compd. 587, 50–58 (2014)

    Article  CAS  Google Scholar 

  19. I. Sharifi, H. Shokrollahi, Nanostructural, magnetic and Mössbauer studies of nanosized Co1 – xZnxFe2O4 synthesized by co-precipitation. J. Magn. Magn. Mater. 324, 2397–2403 (2012)

    Article  CAS  Google Scholar 

  20. K.H. Wu, Y.C. Chang, G.P. Wang, Preparation of NiZn ferrite/SiO2 nanocomposite powders by sol–gel auto-combustion method. J. Magn. Magn. Mater. 269(2), 150–155 (2004)

    Article  CAS  Google Scholar 

  21. G. Vaidyanathan, S. Sendhilnathan, Characterization of Co1–xZnxFe2O4 nanoparticles synthesized by co-precipitation method. Physica B 403, 2157–2167 (2008)

    Article  CAS  Google Scholar 

  22. I. Sharifi, H. Shokrollahi, S. Amiri, Ferrite-based magnetic nanofluids used in hyperthermia applications. J. Magn. Magn. Mater. 324, 903–915 (2012)

    Article  CAS  Google Scholar 

  23. K. Sreekumar et al., A comparison on the catalytic activity of Zn1–xCoxFe2O4 (x = 0, 0.2, 0.5, 0.8 and 1.0)-type ferrospinels prepared via. A low temperature route for the alkylation of aniline and phenol using methanol as the alkylating agent. J. Appl. Catal. A 230(1–2), 245 (2002)

    Article  CAS  Google Scholar 

  24. K. Sreekumar, T.M. Jyothi, T. Mathew et al., Selective N-methylation of aniline with dimethyl carbonate over Zn1–xCoxFe2O4 (x = 0, 0.2, 0.5, 0.8 and 1.0) type systems. J. Mol. Catal. A 159(2), 327 (2000)

    Article  CAS  Google Scholar 

  25. A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan, Solution combustion synthesis of nanoscale materials. Chem. Rev. 116, 14493–14586 (2016)

    Article  CAS  Google Scholar 

  26. P. Erri, P. Pranda, A. Varma, Oxidizer–fuel interactions in aqueous combustion synthesis. 1. iron(III) nitrate–model fuels. Ind. Eng. Chem. Res. 43, 3092–3096 (2004)

    Article  CAS  Google Scholar 

  27. M.S. Anwar, F. Ahmed, B.H. Koo, Enhanced relative cooling power of Ni1–xZnxFe2O4 (0.0 ≤ x ≤ 0.7) ferrites. Acta Mater. 71, 100–107 (2014)

    Article  CAS  Google Scholar 

  28. Y. Köseoǧlu, F. Alan, M. Tan, R. Yilgin, M. Öztürk, Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceram. Int. 38, 3625–3634 (2012)

    Article  Google Scholar 

  29. L.N. Anh, T.T. Loan, N.P. Duong, D.T.T. Nguyet, T.D. Hien, Single phase formation, cation distribution, and magnetic characterization of coprecipitated nickel-zinc ferrites. Anal. Lett. 48, 1965–1978 (2015)

    Article  Google Scholar 

  30. R.C. Kambale, P.A. Shaikh, S.S. Kamble, Y.D. Kolekar, Effect of cobalt substitution on structural, magnetic and electric properties of nickel ferrite. J. Alloys Compd. 478, 599–603 (2009)

    Article  CAS  Google Scholar 

  31. M. Hashim, Alimuddin, S. Kumar, S.E. Shirsath, R.K. Kotnala, H. Chung, R. Kumar, Structural properties and magnetic interactions in Ni0.5Mg0.5Fe2–xCrxO4 (0 ≤ x ≤ 1) ferrite nanoparticles. Powder Technol. 229, 37–44 (2012)

    Article  CAS  Google Scholar 

  32. E. Smidt, K. Meissl, The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Manag. 27, 268 (2007)

    Article  CAS  Google Scholar 

  33. A.M. Wahba, M.B. Mohamed, Structural, magnetic and dielectric properties of nanocrystalline Cr-substituted Co0.8Ni0.2Fe2O4 ferrite. Ceram. Int. 40, 6127 (2014)

    Article  Google Scholar 

  34. M.R. Loghman-Estarki, S. Torkian, R.A. Rastabi, A. Ghasemi, Effect of annealing temperature and copper mole ratio on the morphology, structure and magnetic properties of Mg0.5–xCuxZn0.5Fe2O4 nanoparticles prepared by the modified Pechini method. J. Magn. Magn. Mater. 442, 163–175 (2017)

    Article  CAS  Google Scholar 

  35. A.R. Rouhani, A.H. Esmaeil-Khanian, F. Davar, S. Hasani, The effect of agarose content on the morphology, phase evolution, and magnetic properties of CoFe2O4 nanoparticles prepared by sol-gel autocombustion method. Int. J. Appl. Ceram. Technol. 15, 758–765 (2018)

    Article  CAS  Google Scholar 

  36. L.D. Zhang, J.M. Mou, Nanostructured Materials (in Chinese) (Science Press, Beijing, 2001), pp. 148–152 (in Chinese)

    Google Scholar 

  37. M. Sertkol, Y. Köseoǧlu, A. Baykal, H. Kavasa, A.C. Başaran, Synthesis and magnetic characterization of Zn0.6Ni0.4Fe2O4 nanoparticles via a polyethylene glycol-assisted hydrothermal route. J. Magn. Magn. Mater. 321, 157–162 (2009)

    Article  CAS  Google Scholar 

  38. K.R. Reddy, W. Park, B.C. Sin, J. Noh, Y. Lee, Synthesis of electrically conductive and superparamagnetic monodispersed iron oxide-conjugated polymer composite nanoparticles by in situ chemical oxidative polymerization. J. Colloid Interface Sci. 335, 34–39 (2009)

    Article  CAS  Google Scholar 

  39. K.R. Reddy, K.P. Lee, J.Y. Kim, Y. Lee, Self-assembly and graft polymerization route to monodispersed Fe3O4@SiO2-polyaniline core-shell composite nanoparticles: physical properties. J. Nanosci. Nanotechnol. 8, 5632–5639 (2008)

    Article  CAS  Google Scholar 

  40. Y. Köseoǧlu, A. Baykal, F. Gözüak, H. Kavas, Structural and magnetic properties of CoxZn1–xFe2O4 nanocrystals synthesized by microwave method. Polyhedron 28, 2887–2892 (2009)

    Article  Google Scholar 

  41. R.H. Kodama, A.E. Berkowitz, E.J. McNiff, S. Foner, Surface spin disorder in NiFe2O4 nanoparticles. Phys. Rev. Lett. 77, 394–397 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 51571152), Research Fund for the Key Scientific Program of Higher Education of He’nan Province of China (No. 17B430006), Research fund of He’nan Provincial Training Program of Innovation and Entrepreneurship for Undergraduates (No. 201713503002), Research fund of Xinyang College Training Program of Innovation and Entrepreneurship for Undergraduates (No. CX20170003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jindi Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Xiong, R., Liu, Y. et al. Preparation of cobalt substituted zinc ferrite nanopowders via auto-combustion route: an investigation to their structural and magnetic properties. J Mater Sci: Mater Electron 29, 18358–18371 (2018). https://doi.org/10.1007/s10854-018-9950-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9950-y

Navigation