Skip to main content
Log in

Electrochemical migration of nano-sized Ag interconnects under deionized water and Cl-containing electrolyte

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

With the trend of miniaturization of electronic products, the applications of fine-pitch interconnect have extended in high performance intelligent electronic devices. Thus, electrochemical migration (ECM) would be a concern in fine-pitch scale interconnects under the environment of temperature, humidity and biased voltage. This study investigated ECM behavior of fine-pitch nano-sized Ag interconnects prepared by screen-printing and sputtering methods in deionized water and Cl-containing electrolytes. The ECM induced short-circuit was caused by dendrite formation between the cathode and anode. The ECM time to short circuit decreased with reducing pitch size for both samples but the sputtered samples exhibited better ECM resistance than printed ones due to continuous and consolidated structures of sputtered interconnects. In addition, different microstructure evolution of interconnects were found in different electrolytes and corresponding ion transport mechanism during ECM was discussed. When Cl-containing electrolyte with concentration higher than 554 ppm was introduced, no more dendrite formation between the Ag interconnects was found and the ECM of Ag was suppressed. Instead, AgCl particles were formed at anode of interconnects and continued to grow accompanying with consumption of Ag interconnects, finally leading to open-circuit failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.-S. Kim, W.-R. Myung, S.-B. Jung, Electron. Mater. Lett. 8, 309 (2012)

    Article  CAS  Google Scholar 

  2. H. Shin, H. Lee, H. Yoo, K.S. Lim, M. Lee, Korean J. Metals Mater. 48, 163 (2010)

    Article  CAS  Google Scholar 

  3. A. Biswas, H. Eilers, F.H. Jr., O.C. Aktas, C.V.S. Kiran, Appl. Phys. Lett. 88, 013103 (2006)

    Article  Google Scholar 

  4. Y. Sun, Y. Xia, Adv. Mater. 14, 833 (2002)

    Article  CAS  Google Scholar 

  5. Y. Li, K. Moon, C.P. Wong, Science 308, 1419 (2005)

    Article  CAS  Google Scholar 

  6. M.E. Calderón-Jiménez, A.R.M. Johnson, K.E. Bustos, M.R. Murphy, J.R.V. Winchester, B. Baudrit, Front. Chem. 5, 6 (2017)

    Article  Google Scholar 

  7. J.C. Lin, J.Y. Chan, Mater. Chem. Phys. 43, 256 (1996)

    Article  CAS  Google Scholar 

  8. B. Medgyes, B. Illés, G. Harsányi, J. Mater. Sci. Mater. Electron. 23, 551 (2012)

    Article  CAS  Google Scholar 

  9. G. Harsanyi, IEEE Trans. Compon. Packag. Manuf. Technol. A 18, 602 (1995)

    Article  CAS  Google Scholar 

  10. S. Yang, J. Wu, A. Christou, Microelectron. Reliab. 46, 1915 (2006)

    Article  CAS  Google Scholar 

  11. K.-S. Kim, J.-H. Ahn, B.-I. Noh, S.-B. Jung, J. Nanosci. Nanotechnol. 12, 3219 (2012)

    Article  CAS  Google Scholar 

  12. G. Harsányi, G. Inzelt, Microelectron. Reliab. 41, 229 (2001)

    Article  Google Scholar 

  13. K.-S. Kim, K.-H. Jung, B.-G. Park, Y.-E. Shin, S.-B. Jung, J. Nanosci. Nanotechnol. 13, 7620 (2013)

    Article  CAS  Google Scholar 

  14. B.-I. Noh, J.-W. Yoon, K.-S. Kim, S. Kang, S.-B. Jung, Microelectron. Eng. 103, 1 (2013)

    Article  CAS  Google Scholar 

  15. G.-Q. Lu, C. Yan, Y. Mei, X. Li, Mater. Chem. Phys. 151, 18 (2015)

    Article  CAS  Google Scholar 

  16. J.J.-D. Gu, T. Ford, R. Mitchell, Uhlig’s Corrosion Handbook, 3rd edn. (Wiley, New York, pp. 549 (2011)

    Book  Google Scholar 

  17. Q. Chu, W. Wang, J. Liang, J. Hao, Z. Zhen, Mater. Chem. Phys. 142, 539 (2013)

    Article  CAS  Google Scholar 

  18. M.A. Rodríguez, R.M. Carranza, J. Electrochem. Soc. 158, C221 (2011)

    Article  Google Scholar 

  19. D.O. Flamini, S.B. Saidman, Mater. Chem. Phys. 136, 103 (2012)

    Article  CAS  Google Scholar 

  20. X. Zhong, G. Zhang, Y. Qiu, Z. Chen, W. Zou, X. Guo, Electrochem. Commun. 27, 63 (2013)

    Article  CAS  Google Scholar 

  21. B. Medgyes, X. Zhong, G. Harsányi, J. Mater. Sci. Mater. Electron. 26, 2010 (2015)

    Article  CAS  Google Scholar 

  22. B. Medgyes, B. Illés, G. Harsányi, J. Mater. Sci. Mater. Electron. 24, 2315 (2013)

    Article  CAS  Google Scholar 

  23. X. Zhong, S. Yu, L. Chen, J. Hu, Z. Zhang, J. Mater. Sci. Mater. Electron. 28, 2279 (2017)

    Article  CAS  Google Scholar 

  24. C.-H. Tsou, K.-N. Liu, H.-T. Lin, F.-Y. Ouyang, J. Electron. Mater. 45, 6123 (2016)

    Article  CAS  Google Scholar 

  25. G.Q. Lu, W. Yang, Y.H. Mei, X. Li, G. Chen, X. Chen, Trans. Device Mater. Reliab. 14, 311 (2014)

    Article  Google Scholar 

  26. A.A. Rakesh, H. Yasuhiko, S. Tetsuo, J. Phys. D 42, 042002 (2009)

    Article  Google Scholar 

  27. R. Förch, H. Schönherr, A. Jenkins, Surface Design: Applications in Bioscience and Nanotechnology (Wiley, New York, 2009), pp. 471–473

    Google Scholar 

  28. G. DiGiacomo, in 20th International Reliability Physics Symposium (IRPS) IEEE (1982), pp. 27–33

  29. Z. Lou, B. Huang, Z. Wang, X. Qin, X. Zhang, Y. Liu, R. Zhang, Y. Dai, M.-H. Whangbo, Dalton Trans. 42, 15219 (2013)

    Article  CAS  Google Scholar 

  30. S. Luidold, H. Antrekowitsch, JOM 59, 20 (2007)

    Article  CAS  Google Scholar 

  31. F. Pargar, H. Kolev, D.A. Koleva, K. van Breugel, J. Mater. Sci. 53, 7527 (2018)

    Article  CAS  Google Scholar 

  32. H. Ha, J. Payer, Electrochim. Acta 56, 2781 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank National Tsing Hua University/ Industrial Technology Research Institute Joint Research Center, Taiwan, for financial support under Contract No. 104-B-01-D101W3H03F and Ministry of Science and Technology of Taiwan, R.O.C., for financial support under contract No. 105-2221-E-007-024-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan-Yi Ouyang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, WH., Tsou, CH. & Ouyang, FY. Electrochemical migration of nano-sized Ag interconnects under deionized water and Cl-containing electrolyte. J Mater Sci: Mater Electron 29, 18331–18342 (2018). https://doi.org/10.1007/s10854-018-9947-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9947-6

Navigation