Skip to main content
Log in

Controllable synthesis of Ag nanoparticles encapsulated in non-ionic surfactant-based vesicle for photodegradation of methylene blue

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work reported a novel processing route for producing Ag nanoparticles in non-ionic surfactant structures through microwave assisted reverse micelle method and investigation its application for degradation of methylene blue. In addition, Taguchi statistical design method was applied in order to optimize parameters affecting nanoparticle synthesis. The influences of microwave power and irradiation time on the morphology and particle size of Ag nanoparticles in non-ionic surfactant-based vesicle were also investigated. The results have important implications for controlled synthesis of Ag nanoparticles encapsulated in non-ionic surfactant structures constructed using Span/cholesterol. The particle size of products by the Debye–Scherrer equation calculated about 65 nm. Porosimetric measurements showed the highest pore diameter was 10.6 Å also surface area and pore volumes were 2010 m2/g and 0.3687 cm3/g respectively. The maximum amount for photocatalytic decomposition of methylene blue with Ag nanoparticles dopted in niosomes and niosomes lack of nanoparticles evaluated about 94% and 76% after 90 min respectively. The Ag nanoparticles encapsulated in niosomes were characterized by FT-IR, and UV–Vis spectroscopy, as well as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis and nitrogen adsorption [i.e. Brunauer–Emmett–Teller (BET)] surface area analysis methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Canamares et al., Surface-enhanced Raman scattering study of the adsorption of the anthraquinone pigment alizarin on Ag nanoparticles. J. Raman Spectrosc. 35(11), 921–927 (2004)

    Article  CAS  Google Scholar 

  2. M. Delcea, H. Möhwald, A.G. Skirtach, Stimuli-responsive LbL capsules and nanoshells for drug delivery. Adv. Drug Deliv. Rev. 63(9), 730–747 (2011)

    Article  CAS  Google Scholar 

  3. M.J. Hajipour et al., Antibacterial properties of nanoparticles. Trends Biotechnol. 30(10), 499–511 (2012)

    Article  CAS  Google Scholar 

  4. E. Elumalai et al., Extracellular synthesis of silver nanoparticles using leaves of Euphorbia hirta and their antibacterial activities. J. Pharm. Sci. Res. 2(9), 549–554 (2010)

    CAS  Google Scholar 

  5. L. Shen et al., Flexible electrochromic supercapacitor hybrid electrodes based on tungsten oxide films and silver nanowires. Chem. Commun. 52(37), 6296–6299 (2016)

    Article  CAS  Google Scholar 

  6. K. Anand et al., Bio-synthesis of silver nanoparticles using agroforestry residue and their catalytic degradation for sustainable waste management. J. Clust. Sci. 28(4), 2279–2291 (2017)

    Article  CAS  Google Scholar 

  7. T. Musacchio, V.P. Torchilin, Recent developments in lipid-based pharmaceutical nanocarriers. Front. Biosci. 16, 1388–1412 (2011)

    Article  CAS  Google Scholar 

  8. R.R. Sawant, V.P. Torchilin, Liposomes as ‘smart’pharmaceutical nanocarriers. Soft Matter 6(17), 4026–4044 (2010)

    Article  CAS  Google Scholar 

  9. V.P. Torchilin, Micellar nanocarriers: pharmaceutical perspectives. Pharm. Res. 24(1), 1 (2007)

    Article  CAS  Google Scholar 

  10. M.M. Foroughi, M. Ranjbar, Microwave-assisted synthesis and characterization photoluminescence properties: a fast, efficient route to produce ZnO/GrO nanocrystalline. J. Mater. Sci.: Mater. Electron. 28(2), 1359–1363 (2017)

    CAS  Google Scholar 

  11. M.B. Gawande et al., Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc. Chem. Res. 47(4), 1338–1348 (2014)

    Article  CAS  Google Scholar 

  12. K. Kaviyarasu et al., In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of zinc oxide doped TiO2 nanocrystals: investigation of bio-medical application by chemical method. Mater. Sci. Eng. C 74, 325–333 (2017)

    Article  CAS  Google Scholar 

  13. H. Soltani, A. Pardakhty, S. Ahmadzadeh, Determination of hydroquinone in food and pharmaceutical samples using a voltammetric based sensor employing NiO nanoparticle and ionic liquids. J. Mol. Liq. 219, 63–67 (2016)

    Article  CAS  Google Scholar 

  14. M. Rezayi et al., Immobilization of ionophore and surface characterization studies of the titanium (III) ion in a PVC-membrane sensor. Sensors 12(7), 8806–8814 (2012)

    Article  CAS  Google Scholar 

  15. M. Fouladgar, S. Ahmadzadeh, Application of a nanostructured sensor based on NiO nanoparticles modified carbon paste electrode for determination of methyldopa in the presence of folic acid. Appl. Surf. Sci. 379, 150–155 (2016)

    Article  CAS  Google Scholar 

  16. N. Anton et al., Nano-emulsions and nanocapsules by the PIT method: an investigation on the role of the temperature cycling on the emulsion phase inversion. Int. J. Pharm. 344(1–2), 44–52 (2007)

    Article  CAS  Google Scholar 

  17. F. Shakeel et al., Nanoemulsions as vehicles for transdermal delivery of aceclofenac. Aaps Pharmscitech 8(4), 191 (2007)

    Article  Google Scholar 

  18. A.A. Ezhilarasi et al., Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: cytotoxicity effect of nanoparticles against HT-29 cancer cells. J. Photochem. Photobiol. B 164, 352–360 (2016)

    Article  CAS  Google Scholar 

  19. M. Jaiswal, R. Dudhe, P.K. Sharma, Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech 5(2), 123–127 (2015)

    Article  Google Scholar 

  20. J.J. Vijaya et al., Bioreduction potentials of dried root of Zingiber officinale for a simple green synthesis of silver nanoparticles: antibacterial studies. J. Photochem. Photobiol. B 177, 62–68 (2017)

    Article  Google Scholar 

  21. D. Ag Seleci et al., Niosomes as nanoparticular drug carriers: fundamentals and recent applications. J. Nanomater. (2016). https://doi.org/10.1155/2016/7372306

    Article  Google Scholar 

  22. S. Moghassemi, A. Hadjizadeh, Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J. Controll. Release 185, 22–36 (2014)

    Article  CAS  Google Scholar 

  23. C. Marianecci et al., Niosomes from 80 s to present: the state of the art. Adv. Colloid Interface Sci. 205, 187–206 (2014)

    Article  CAS  Google Scholar 

  24. N. Mahale et al., Niosomes: novel sustained release nonionic stable vesicular systems—an overview. Adv. Colloid Interface Sci. 183, 46–54 (2012)

    Article  Google Scholar 

  25. I.F. Uchegbu, S.P. Vyas, Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int. J. Pharm. 172(1–2), 33–70 (1998)

    Article  CAS  Google Scholar 

  26. T. Yoshioka, B. Sternberg, A.T. Florence, Preparation and properties of vesicles (niosomes) of sorbitan monoesters (span 20, 40, 60 and 80) and a sorbitan triester (span 85). Int. J. Pharm. 105(1), 1–6 (1994)

    Article  CAS  Google Scholar 

  27. C. Jain, S. Vyas, Preparation and characterization of niosomes containing rifampicin for lung targeting. J. Microencapsul. 12(4), 401–407 (1995)

    Article  CAS  Google Scholar 

  28. K.M.M. Abou El-Nour et al., Synthesis and applications of silver nanoparticles. Arab. J. Chem. 3(3), 135–140 (2010)

    Article  CAS  Google Scholar 

  29. X.-F. Zhang et al., Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 17(9), 1534 (2016)

    Article  Google Scholar 

  30. R.D. Rivera-Rangel et al., Green synthesis of silver nanoparticles in oil-in-water microemulsion and nano-emulsion using geranium leaf aqueous extract as a reducing agent. Colloids Surf. A 536, 60–67 (2018)

    Article  CAS  Google Scholar 

  31. P. Moteriya, S. Chanda, Biosynthesis of silver nanoparticles formation from Caesalpinia pulcherrima stem metabolites and their broad spectrum biological activities. J. Genet. Eng. Biotechnol. 16(1), 105–113 (2018)

    Article  Google Scholar 

  32. B. Le Ouay, F. Stellacci, Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today 10(3), 339–354 (2015)

    Article  Google Scholar 

  33. R. Salomoni et al., Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol. Sci. Appl. 10, 115–121 (2017)

    Article  CAS  Google Scholar 

  34. B.N. Akhgar et al., Application of Taguchi method for optimization of synthetic rutile nano powder preparation from ilmenite concentrate. Chem. Eng. Res. Des. 90(2), 220–228 (2012)

    Article  CAS  Google Scholar 

  35. Y.A. Youssef, Y. Beauchamp, M. Thomas, Comparison of a full factorial experiment to fractional and Taguchi designs in a lathe dry turning operation. Comput. Ind. Eng. 27(1–4), 59–62 (1994)

    Article  Google Scholar 

  36. H. Zhang, in Liposomes: Methods and Protocols, ed. by G.G.M. D’Souza. Thin-film hydration followed by extrusion method for liposome preparation (Springer New York, 2017), pp. 17–22

    Chapter  Google Scholar 

  37. X. Ai et al., Thin-film hydration preparation method and stability test of DOX-loaded disulfide-linked polyethylene glycol 5000-lysine-di-tocopherol succinate nanomicelles. Asian J. Pharm. Sci. 9(5), 244–250 (2014)

    Article  Google Scholar 

  38. B. Ingham, M.F. Toney, in Metallic Films for Electronic, Optical and Magnetic Applications, ed. by K. Barmak, K. Coffey. 1 - X-ray diffraction for characterizing metallic films, (Woodhead Publishing, Cambridge, 2014), pp. 3–38

    Chapter  Google Scholar 

  39. Y.-Y. Wang et al., Controllable preparation of porous ZnO microspheres with a niosome soft template and their photocatalytic properties. Ceram. Int. 42(10), 12467–12474 (2016)

    Article  CAS  Google Scholar 

  40. S. De, R. Kundu, A. Biswas, Synthesis of gold nanoparticles in niosomes. J. Colloid Interface Sci. 386(1), 9–15 (2012)

    Article  CAS  Google Scholar 

  41. Z. Sezgin-Bayindir, M.N. Antep, N. Yuksel, Development and characterization of mixed niosomes for oral delivery using candesartan cilexetil as a model poorly water-soluble drug. AAPS PharmSciTech 16(1), 108–117 (2015)

    Article  CAS  Google Scholar 

  42. S. Suresh, S. Karthikeyan, K. Jayamoorthy, FTIR and multivariate analysis to study the effect of bulk and nano copper oxide on peanut plant leaves. J. Sci.: Adv. Mater. Dev. 1(3), 343–350 (2016)

    Google Scholar 

  43. K. Jyoti, M. Baunthiyal, A. Singh, Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci. 9(3), 217–227 (2016)

    Article  CAS  Google Scholar 

  44. K. Anandalakshmi, J. Venugobal, V. Ramasamy, Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl. Nanosci. 6(3), 399–408 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Institute of Neuropharmacology and, Kerman University of Medical Sciences, Kerman, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehdi Ranjbar or Mojtaba Shakibaie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbar, M., Forootanfar, H., Pardakhty, A. et al. Controllable synthesis of Ag nanoparticles encapsulated in non-ionic surfactant-based vesicle for photodegradation of methylene blue. J Mater Sci: Mater Electron 29, 18249–18257 (2018). https://doi.org/10.1007/s10854-018-9939-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9939-6

Navigation