Skip to main content

Advertisement

Log in

Facile morphology control of high aspect ratio patterned Si nanowires by metal-assisted chemical etching

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

An Author Correction to this article was published on 08 September 2018

This article has been updated

Abstract

Facile and effective method to fabricate highly ordered silicon nanowires (SiNWs) using metal-assisted chemical etching (MACE) was demonstrated. MACE solutions with various concentrations were studied to understand the etching mechanism for patterned Si substrates with different doping concentrations. MACE rate of Si (100) at different time periods was studied with different doping concentrations (p, p+, n, and n+) at a MACE solution concentration of 5:1:1 for an accurate morphology control and reproducibility of the SiNWs. Based on a four-step model, the SiNW formation mechanism was proposed involving anisotropic etching of SiNWs based on hole transfer between Au/Si interfaces exposed when subjected to MACE solution. Time dependent variation in etch rate of Si to fabricate SiNWs was observed with different doping concentration. The effect of the doping concentration on the etching was revealed based on band diagrams. However, agglomeration of p+-SiNWs was observed, which was attributed to their doping and ability to act against various forces like surface tension during drying. Different aspect ratios of SiNWs were observed for different time periods; n+-SiNWs exhibited the maximum aspect ratio of approximately 81. A visible-light absorbance analysis revealed the potential of the synthesized SiNWs can be good base and host materials for various light harvesting and energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

  • 08 September 2018

    The original version of this article unfortunately contained an error in one of the co-author’s name. Part of family name was erroneously tagged as given name. The correct name should be “Mostafa Afifi Hassan”.

References

  1. Y. Wu, H. Yan, M. Huang, B. Messer, J.H. Song, P. Yang, Chem. A Eur. J. 8, 1260 (2002)

    Article  CAS  Google Scholar 

  2. Y. Cui, Science 293, 1289 (2001)

    Article  CAS  Google Scholar 

  3. F. Patolsky, G. Zheng, C.M. Lieber, Nat. Protoc. 1, 1711 (2006)

    Article  CAS  Google Scholar 

  4. K. Peng, Y. Xu, Y. Wu, Y. Yan, S.T. Lee, J. Zhu, Small 1, 1062 (2005)

    Article  CAS  Google Scholar 

  5. Y.J. Hwang, A. Boukai, P. Yang, Nano Lett. 3, 1 (2009)

    Google Scholar 

  6. V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, S.H. Christiansen, D. Jena, Nano Lett. 9, 1549 (2009)

    Article  CAS  Google Scholar 

  7. A. Kargar, K. Sun, Y. Jing, C. Chulmin, H. Jeong, Y. Zhou, K. Madsen, P. Naughton, S. Jin, G.Y. Jung, D. Wang, Nano Lett. 13, 3017 (2013)

    Article  CAS  Google Scholar 

  8. V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, U. Gösele, Small 2, 85 (2006)

    Article  CAS  Google Scholar 

  9. J. Goldberger, A.I. Hochbaum, R. Fan, P. Yang, Nano Lett. 6, 973 (2006)

    Article  CAS  Google Scholar 

  10. B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Nature 449, 885 (2007)

    Article  CAS  Google Scholar 

  11. D.M. Lyons, K.M. Ryan, M. Morris, J.D. Holmes, Nano Lett. 2, 811 (2002)

    Article  CAS  Google Scholar 

  12. K.-H. Hong, J. Kim, S.-H. Lee, J.K. Shin, Nano Lett. 8, 1335 (2008)

    Article  CAS  Google Scholar 

  13. K. Choi, Y. Song, B. Ki, J. Oh, ACS Omega 2, 2100 (2017)

    Article  CAS  Google Scholar 

  14. D.D.D. Ma, Science 299, 1874 (2003)

    Article  CAS  Google Scholar 

  15. F. Toor, J.B. Miller, L.M. Davidson, Nanotechnology 27, 412003 (2016)

    Article  Google Scholar 

  16. M.-K. Kim, H. Sim, S.J. Yoon, S.-H. Gong, C.W. Ahn, Y.H. Cho, Y.H. Lee, Nano Lett. 15, 4102 (2015)

    Article  CAS  Google Scholar 

  17. J. Henzie, M.H. Lee, T.W. Odom, Nat. Nanotechnol. 2, 549 (2007)

    Article  CAS  Google Scholar 

  18. Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, R.S. Williams, Nano Lett. 9, 2306 (2009)

    Article  Google Scholar 

  19. K. Awazu, X. Wang, M. Fujimaki, T. Kuriyama, A. Sai, Y. Ohki, H. Imai, J. Vac. Sci. Technol. B 23, 934 (2005)

    Article  CAS  Google Scholar 

  20. N. Mojarad, M. Hojeij, L. Wang, J. Gobrecht, Y. Ekinci, Nanoscale 7, 4031 (2015)

    Article  CAS  Google Scholar 

  21. M.-L. Zhang, K. Peng, X. Fan, J. Jie, R. Zhang, S. Lee, N. Wong, J. Phys. Chem. C 112, 4444 (2008)

    Article  CAS  Google Scholar 

  22. X. Zhong, Y. Qu, Y. Lin, L. Liao, X. Duan, ACS Appl. Mater. Interfaces 3, 261 (2011)

    Article  CAS  Google Scholar 

  23. K. Balasundaram, J.S. Sadhu, J.C. Shin, B. Azeredo, D. Chanda, M. Malik, K. Hsu, J.A. Rogers, P. Ferreira, S. Sinha, Nanotechnology 23, 30 (2012)

    Article  Google Scholar 

  24. D. Dimova-Malinovska, M. Sendova-Vassileva, N. Tzenov, M. Kamenova, Thin Solid Films 297, 9 (1997)

    Article  CAS  Google Scholar 

  25. X. Li, P.W. Bohn, Appl. Phys. Lett. 77, 2572 (2000)

    Article  CAS  Google Scholar 

  26. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008)

    Article  CAS  Google Scholar 

  27. Y. Qu, L. Liao, Y. Li, H. Zhang, Y. Huang, X. Duan, Nano Lett. 9, 4539 (2009)

    Article  CAS  Google Scholar 

  28. H. Fang, Y. Wu, J. Zhao, J. Zhu, Nanotechnology 17, 3768 (2006)

    Article  CAS  Google Scholar 

  29. X. Zhong, Y. Qu, Y.-C. Lin, L. Liao, X. Duan, ACS Appl. Mater. Interfaces 3, 261 (2011)

    Article  CAS  Google Scholar 

  30. N. Geyer, N. Wollschläger, B. Fuhrmann, A. Tonkikh, A. Berger, P. Werner, M. Jungmann, R. Krause-Rehberg, H.S. Leipner, Nanotechnology 26, 245301 (2015)

    Article  Google Scholar 

  31. Z. Huang, N. Geyer, P. Werner, J. de Boor, U. Gösele, Adv. Mater. 23, 285 (2011)

    Article  CAS  Google Scholar 

  32. O.J. Hildreth, D. Brown, C.P. Wong, Adv. Funct. Mater. 21, 3119 (2011)

    Article  CAS  Google Scholar 

  33. K. Rykaczewski, O.J. Hildreth, C.P. Wong, A.G. Fedorov, J.H.J. Scott, Nano Lett. 11, 2369 (2011)

    Article  CAS  Google Scholar 

  34. C. Chiappini, X. Liu, J.R. Fakhoury, M. Ferrari, Adv. Funct. Mater. 20, 2231 (2010)

    Article  CAS  Google Scholar 

  35. M. Fanciulli, M. Belli, S. Paleari, A. Lamperti, M. Sironi, A. Pizio, ECS J. Solid State Sci. Technol. 5, P3138 (2016)

    Article  CAS  Google Scholar 

  36. G. Oskam, J.G. Long, A. Natarajan, P.C. Searson, J. Phys. D 31, 1927 (1998)

    Article  CAS  Google Scholar 

  37. A.S. Togonal, L. He, P. Roca i Cabarrocas, Langmuir 30, 10290 (2014)

    Article  CAS  Google Scholar 

  38. A.I. Hochbaum, D. Gargas, Y.J. Hwang, P. Yang, Nano Lett. 9, 3550 (2009)

    Article  CAS  Google Scholar 

  39. M.A. Asgar, M. Hasan, M.F. Huq, Z.H. Mahmood, Int. Nano Lett. 4, 101 (2014)

    Article  Google Scholar 

  40. K. Peng, J. Jie, W. Zhang, S.-T. Lee, Appl. Phys. Lett. 93, 033105 (2008)

    Article  Google Scholar 

  41. D.P. Dubal, D. Aradilla, G. Bidan, P. Gentile, T.J.S. Schubert, J. Wimberg, S. Sadki, P. Gomez-Romero, Sci. Rep. 5, 9771 (2015)

    Article  CAS  Google Scholar 

  42. D.P. Dubal, N.R. Chodankar, D.-H. Kim, P. Gomez-Romero, Chem. Soc. Rev. 47, 2065 (2018)

    Article  CAS  Google Scholar 

  43. D.P. Dubal, N.R. Chodankar, R. Holze, D.H. Kim, P. Gomez-Romero, ChemSusChem 10, 1771 (2017)

    Article  CAS  Google Scholar 

  44. N.R. Chodankar, D.P. Dubal, S. Ji, D.H. Kim, Adv. Mater. Interface 5, 1800283 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea Grant Funded by the Korean Government (NRF-2016R1A2B4008622).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Wan Ryu.

Additional information

The original version of this article was revised due to an error in one of the co-author’s name.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagal, I.V., Johar, M.A., Hassan, M.A. et al. Facile morphology control of high aspect ratio patterned Si nanowires by metal-assisted chemical etching. J Mater Sci: Mater Electron 29, 18167–18177 (2018). https://doi.org/10.1007/s10854-018-9929-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9929-8

Navigation