Effects of LiNbO3 doping on the microstructures and electrical properties of BiScO3–PbTiO3 piezoelectric system

Abstract

Piezoelectric ceramics xLiNbO3yBiScO3–(1−xy)PbTiO3 (LN–BS–PT, 0.00 ≤ x ≤ 0.10, 0.30 ≤ y ≤ 0.36) were synthesized and their phase diagram and morphotropic phase boundary between rhombohedral and tetragonal phases have been confirmed. The optimal properties were found at the composition of 0.03LN–0.36BS–0.61PT with piezoelectric coefficient d33* value of 702 pm/V, d33 of 551 pC/N, planar electromechanical coupling factor kp of 0.51, remnant polarization Pr of 46.5 µC/cm2, Curie temperature Tc of 337 °C, and a large strain of 0.351% at an electric field of 50 kV/cm and frequency of 2 Hz with a low strain hysteresis of 5.9%. The Curie temperature of the ternary system presents a linear relationship with LiNbO3 and BiScO3 contents. The optimization of these electric properties was probably ascribed to the enhancement in domain walls and the improving mobility of domain switching due to LiNbO3 doping.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    B. Jaffe, R.S. Roth, S. Marzullo, J. Appl. Phys. 25, 809 (1954)

    CAS  Article  Google Scholar 

  2. 2.

    S.W. Choi, T.R. Shrout, S.J. Jang, A.S. Bhalla, Mater. Lett. 8, 253 (1989)

    CAS  Article  Google Scholar 

  3. 3.

    J. Kuwata, K. Uchino, S. Nomura, Jpn. J. Appl. Phys. 21, 1298 (1982)

    CAS  Article  Google Scholar 

  4. 4.

    H.Q. Fan, H.E. Kim, J. Appl. Phys. 91, 317 (2002)

    CAS  Article  Google Scholar 

  5. 5.

    Y. Hosono, Y. Yamashita, H. Sakamoto, N. Ichinose, Jpn. J. Appl. Phys. 42, 5681 (2003)

    CAS  Article  Google Scholar 

  6. 6.

    H.J. Lee, S. Zhang, J. Luo, F. Li, T.R. Shrout, Adv. Funct. Mater. 20, 3154 (2010)

    CAS  Article  Google Scholar 

  7. 7.

    I.T. Seo, T.G. Lee, D.H. Kim, J. Hur, J.H. Kim, S. Nahm, J. Ryu, B.Y. Choi, Sens. Actuators A 238, 71 (2016)

    CAS  Article  Google Scholar 

  8. 8.

    H. Tang, M.F. Zhang, S.J. Zhang, Y.J. Feng, F. Li, T.R. Shrout, J. Eur. Ceram. Soc. 33, 2491 (2013)

    CAS  Article  Google Scholar 

  9. 9.

    R.E. Eitel, C.A. Randall, T.R. Shrout, P.W. Rehrig, Jpn. J. Appl. Phys. 40, 5999 (2001)

    CAS  Article  Google Scholar 

  10. 10.

    S.J. Zhang, C. Stringer, R. Xia, S.M. Choi, C.A. Randall, T.R. Shrout, J. Appl. Phys. 98, 034103 (2005)

    Article  Google Scholar 

  11. 11.

    A. Sehirlioglu, A. Sayir, F. Dynys, J. Am. Ceram. Soc. 93, 1718 (2010)

    CAS  Google Scholar 

  12. 12.

    T. Sebastian, I. Sterianou, I.M. Reaney, T. Leist, W. Jo, J. Rödel, J. Electroceram. 28, 95 (2012)

    CAS  Article  Google Scholar 

  13. 13.

    I. Grinberg, M.R. Suchomel, P.K. Davies, A.M. Rappe, J. Appl. Phys. 98, 094111 (2005)

    Article  Google Scholar 

  14. 14.

    C.B. Long, H.Q. Fan, P.R. Ren, Inorg. Chem. 52, 5045 (2013)

    CAS  Article  Google Scholar 

  15. 15.

    L.J. Liu, H.Q. Fan, S.M. Ke, X.L. Chen, J. Alloys Compd. 458, 504 (2008)

    CAS  Article  Google Scholar 

  16. 16.

    J.G. Wu, Y. Yu, X.T. Li, X.Y. Gao, S.X. Dong, S. Zhang, J. Am. Ceram. Soc. 98, 3145 (2015)

    CAS  Article  Google Scholar 

  17. 17.

    J.G. Chen, G.X. Jin, C.M. Wang, J.R. Cheng, D. Damjanovic, J. Am. Ceram. Soc. 97, 3890 (2014)

    CAS  Article  Google Scholar 

  18. 18.

    S.J. Zhang, R.E. Eitel, C.A. Randall, T.R. Shrout, E.F. Alberta, Appl. Phys. Lett. 86, 262904 (2005)

    Article  Google Scholar 

  19. 19.

    J. Ryu, S. Priya, C. Sakaki, K. Uchino, Jpn. J. Appl. Phys. 41, 6040 (2002)

    CAS  Article  Google Scholar 

  20. 20.

    J. Shi, H.Q. Fan, X. Liu, Q. Li, J. Eur. Ceram. Soc. 34, 3675 (2014)

    CAS  Article  Google Scholar 

  21. 21.

    A. Sehirlioglu, A. Sayir, F. Dynys, J. Appl. Phys. 106, 014102 (2009)

    Article  Google Scholar 

  22. 22.

    J. Chen, Y.P. Wang, Y.T. Zhang, Y. Yang, R.Y. Jin, J. Eur. Ceram. Soc. 37, 2365 (2017)

    CAS  Article  Google Scholar 

  23. 23.

    J.G. Hao, W.F. Bai, W. Li, B. Shen, J.W. Zhai, J. Appl. Phys. 114, 044103 (2013)

    Article  Google Scholar 

  24. 24.

    L. Wu, B. Shen, Q.R. Hu, J. Chen, Y.P. Wang, Y.D. Xia, J. Yin, J. Am. Ceram. Soc. 100, 4670 (2017)

    CAS  Article  Google Scholar 

  25. 25.

    Y.J. Dai, S.J. Zhang, T.R. Shrout, X.W. Zhang, J. Am. Ceram. Soc. 93, 1108 (2010)

    CAS  Article  Google Scholar 

  26. 26.

    J.U. Rahman, A. Hussain, A. Maqbool, R.A. Malik, T.K. Song, M.H. Kim, S. Lee, W.J. Kim, J. Korean Phys. Soc. 67, 1240 (2015)

    Article  Google Scholar 

  27. 27.

    Y. Chen, J.G. Zhu, D.Q. Xiao, B.Q. Qin, Y.H. Jiang, J. Alloys Compd. 470, 420 (2009)

    CAS  Article  Google Scholar 

  28. 28.

    Q. Zhang, Z.R. Li, L.H. Li, Z. Xu, X. Yao, J. Mater. Sci. Mater. Electron. 22, 1490 (2011)

    CAS  Article  Google Scholar 

  29. 29.

    Q. Zhang, Z.R. Li, N. Zhang, Z. Xu, J. Mater. Sci. 47, 696 (2012)

    Article  Google Scholar 

  30. 30.

    C. Cochard, F. Karolak, C. Bogicevic, O. Guedes, P.E. Janolin, Adv. Mater. Sci. Eng. 2015, 1 (2015)

    Article  Google Scholar 

  31. 31.

    L. Feng, Z.G. Ye, J. Solid State Chem. 163, 484 (2002)

    CAS  Article  Google Scholar 

  32. 32.

    G. Arlt, J. Mater. Sci. 25, 2655 (1990)

    CAS  Article  Google Scholar 

  33. 33.

    Y.K. Yan, Y. Zhou, S. Gupta, S. Priya, Appl. Phys. Lett. 103(8), 082906 (2013)

    Article  Google Scholar 

  34. 34.

    D. Maurya, Y. Zhou, Y.K. Yan, S. Priya, J. Mater. Chem. C 1, 2102 (2013)

    CAS  Article  Google Scholar 

  35. 35.

    H. Tang, S.J. Zhang, Y.J. Feng, F. Li, T.R. Shrout, D. Johnson, J. Am. Ceram. Soc. 96, 2857 (2013)

    CAS  Article  Google Scholar 

  36. 36.

    Y.F. Chang, Y. Sun, J. Wu, X.H. Wang, S.T. Zhang, B. Yang, G.L. Messing, W.W. Cao, J. Eur. Ceram. Soc. 36, 1973 (2016)

    CAS  Article  Google Scholar 

  37. 37.

    E.M. Sabolsky, A.R. James, S. Kwon, S. Trolier-McKinstry, G.L. Messing, Appl. Phys. Lett. 78, 2551 (2001)

    CAS  Article  Google Scholar 

  38. 38.

    W.F. Bai, D.Q. Chen, P. Zheng, J.H. Xi, Y. Zhou, B. Shen, J.W. Zhai, Z.G. Ji, J. Eur. Ceram. Soc. 37, 2591 (2017)

    CAS  Article  Google Scholar 

  39. 39.

    Y.K. Yan, K.H. Cho, S. Priya, J. Am. Ceram. Soc. 94, 1784 (2011)

    CAS  Article  Google Scholar 

  40. 40.

    S. Chen, X.L. Dong, H. Yang, R.H. Liang, C.L. Mao, J. Am. Ceram. Soc. 90, 477 (2007)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the 111 project (No. B12021), the National Natural Science Foundation of China (No. 51372111), the Science and Technology Research Items of Shenzhen (JCYJ20170412153325679), the Hong Kong, Macao and Taiwan Science and Technology Cooperation Program of China (2015DFH10200), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ying Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1217 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Wang, Y., Wu, L. et al. Effects of LiNbO3 doping on the microstructures and electrical properties of BiScO3–PbTiO3 piezoelectric system. J Mater Sci: Mater Electron 29, 18036–18044 (2018). https://doi.org/10.1007/s10854-018-9898-y

Download citation