Humidity-related failures in electronics: effect of binary mixtures of weak organic acid activators

Abstract

The ionic residues of activator compounds used in the no-clean solder flux systems often remain on a Printed Circuit Board Assembly surface after the soldering process and may compromise the corrosion reliability of electronic device upon exposure to humid environment. The solder flux formulations contain weak organic acids (WOAs) activators of different types, sometimes present in the form of mixtures of varying compositions. This paper presents the results of parametric hygroscopicity studies of binary mixtures of weak organic acids that simulate the activating part of the typical no-clean solder flux formulation. Three types of binary blends of varying ratios between the acids were tested: adipic:succinic, adipic:glutaric, and succinic:glutaric. The hygroscopic and corrosive behaviour of the mixtures were investigated under relative humidity (RH) varying from 30 to ~ 99% and at test temperatures of 25 °C, 40 °C, and 60 °C. The moisture sorption and desorption isotherms were determined using a gravimetric method, while AC electrochemical impedance was employed for monitoring the solid–liquid transition of residues. The influence of residues on corrosion reliability was investigated using DC leakage current measurements on a contaminated surface insulation resistance comb patterns with tin solder alloy. The results of corrosion testing were correlated with hygroscopicity studies and visualized by ex-situ colorimetric analysis using a tin ion indicator in a gel. The results show that the critical humidity level for moisture absorption shifts to lower RH values for mixtures, compared to pure WOAs. Water absorption behaviour varied based on the relative content of WOAs in the mixtures and ambient temperature, which also influenced the leak currents and electrochemical migration.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    J.A. Jachim, G.B. Freeman, L.J. Turbini, IEEE Trans. Compon. Packag. Manuf. Technol. B 20, 443 (1997)

    CAS  Article  Google Scholar 

  2. 2.

    J.F. Shipley, Weld. J. 54, S357–S362 (1975)

    Google Scholar 

  3. 3.

    V. Verdingovas, M.S. Jellesen, R. Ambat, Solder. Surf. Mt. Technol. 27, 146 (2015)

    Article  Google Scholar 

  4. 4.

    H. Conseil, V. Verdingovas, M.S. Jellesen, R. Ambat, J. Mater. Sci. 27, 23 (2016)

    CAS  Google Scholar 

  5. 5.

    M. Nasta, H.C. Peebles, Circ. World 21, 10 (1995)

    Article  Google Scholar 

  6. 6.

    K. Piotrowska, M.S. Jellesen, R. Ambat, Solder. Surf. Mt. Technol. 29, 133 (2017)

    Article  Google Scholar 

  7. 7.

    V. Verdingovas, M.S. Jellesen, R. Ambat, J. Electron. Mater. 44, 1116 (2015)

    CAS  Article  Google Scholar 

  8. 8.

    J.H. Lau, Solder Joint Reliability: Theory and Applications, (Springer, New York, 1991)

    Google Scholar 

  9. 9.

    H. Schimanski, O. Yezerska, P. Plagemann, J. Hagge, Proc. Eur. Corros. Congr. EUROCORR 2016, 1 (2016)

    Google Scholar 

  10. 10.

    K. Piotrowska, H. Conseil, M.S. Jellesen, R. Ambat, Proc. Eur. Corros. Congr. EUROCORR 2014, 1 (2014)

    Google Scholar 

  11. 11.

    C. Dominkovics, G. Harsányi, in 29th Int. Spring Semin. Electron. Technol. Nano Technol. Electron. Packag., 206 (2007)

  12. 12.

    U. Rathinavelu, M.S. Jellesen, P. Møller, R. Ambat, IEEE Trans. Compon. Packag. Manuf. Technol. 2, 719 (2012)

    CAS  Article  Google Scholar 

  13. 13.

    M.S. Jellesen, D. Minzari, U. Rathinavelu, P. Møller, R. Ambat, Eng. Fail. Anal. 17, 1263 (2010)

    CAS  Article  Google Scholar 

  14. 14.

    R. Michalkiewicz, S.M.T. Surf, Mt. Technol. Mag. 29, 20 (2014)

    Google Scholar 

  15. 15.

    K.S. Hansen, M.S. Jellesen, P. Møller, P.J.S. Westermann, R. Ambat, Annu. Reliab. Maintainab. Symp. RAMS 2009, (2009)

  16. 16.

    M.S. Jellesen, M. Dutta, V. Verdingovas, R. Ambat, Proc. Imaps Nord. Annu. Conf. Proc. 2012, 104 (2012)

    Google Scholar 

  17. 17.

    K. Piotrowska, R. Ud Din, M.S. Jellesen, R. Ambat, IEEE Trans. Compon. Packag. Manuf. Technol. (2018) https://doi.org/10.1109/TCPMT.2018.2792047

    Article  Google Scholar 

  18. 18.

    G.W. Warren, P. Wynblatt, M. Zamanzadeh, J. Electron. Mater. 18, 339 (1989)

    CAS  Article  Google Scholar 

  19. 19.

    K.M. Adams, J.E. Anderson, Y.B. Graves, Circ. World 20, 41 (1994)

    Article  Google Scholar 

  20. 20.

    K. Piotrowska, R.U. Din, F.B. Grumsen, M.S. Jellesen, R. Ambat, J. Electron. Mater. 47, 4190 (2018)

    CAS  Article  Google Scholar 

  21. 21.

    C. Peng, M.N. Chan, C.K. Chan, Environ. Sci. Technol. 35, 4495 (2001)

    CAS  Article  Google Scholar 

  22. 22.

    P.A. Thiel, T.E. Madey, Surf. Sci. Rep. 7, 211 (1987)

    CAS  Article  Google Scholar 

  23. 23.

    L.J. Mauer, L.S. Taylor, Annu. Rev. Food Sci. Technol. 1, 41 (2010)

    CAS  Article  Google Scholar 

  24. 24.

    L.J. Mauer, M. Allan, Manuf. Conf. 95, 73 (2015)

    Google Scholar 

  25. 25.

    M.C. Foster, G.E. Ewing, J. Chem. Phys. 112, 6817 (2000)

    CAS  Article  Google Scholar 

  26. 26.

    A.N. Hiatt, M.G. Ferruzzi, L.S. Taylor, L.J. Mauer, J. Agric. Food Chem. 56, 6471 (2008)

    CAS  Article  Google Scholar 

  27. 27.

    A.H. Al-Muhtaseb, W.A.M. McMinn, T.R.A. Magee, Food Bioprod. Process. 80, 118 (2002)

    CAS  Article  Google Scholar 

  28. 28.

    N. Tang, H.R. Munkelwitz, J. Appl. Meteorol. 33, 791 (1994)

    Article  Google Scholar 

  29. 29.

    G. Zografi, B. Hancock, Top. Pharm. Sci. 1993, 405 (1994)

    Google Scholar 

  30. 30.

    S.D. Brooks, M.E. Wise, M. Cushing, M.A. Tolbert, Geophys. Res. Lett. 29, 23 (2002)

    Article  Google Scholar 

  31. 31.

    L. Zou, C. Hunt, Solder. Surf. Mt. Technol. 11, 30 (1999)

    Article  Google Scholar 

  32. 32.

    J.E. Sohn, U. Ray, Circ. World 21, 22 (1995)

    Article  Google Scholar 

  33. 33.

    L.J. Turbini, J.A. Jachim, G.B. Freeman, J.F. Lane, Thirteen. IEEE/CHMT Int. Electron. Manuf. Technol. Symp. 80 (1992)

  34. 34.

    V. Verdingovas, M.S. Jellesen, R. Ambat, Microelectron. Reliab. 73, 158 (2017)

    Article  Google Scholar 

  35. 35.

    J.T. Carstensen, Pharmaceutical Principles of Solid Dosage Forms (Technomic Pub, Lancaster, 1993)

    Google Scholar 

  36. 36.

    L. Ma, B. Sood, M. Pecht, IEEE Trans. Dev. Mater. Reliab. 11, 66 (2011)

    CAS  Article  Google Scholar 

  37. 37.

    L. D’Angelo, V. Verdingovas, L. Ferrero, E. Bolzacchini, R. Ambat, IEEE Trans. Dev. Mater. Rel. 17, 746 (2017)

    Article  Google Scholar 

  38. 38.

    S. Zhan, M.H. Azarian, M.G. Pecht, IEEE Trans. Electron. Packag. Manuf. 29, 217 (2006)

    Article  Google Scholar 

  39. 39.

    J.D. Sinclair, J. Electrochem. Soc. 135, C89 (1988)

    Article  Google Scholar 

  40. 40.

    S. Canumalla, K. Ludwig, R. Pedigo, T. Fitzgerald, Proc. Electron. Compon. Technol. Conf. 625 (2006)

  41. 41.

    B.A. Smith, L.J. Turbini, J. Electron. Mater. 28, 1299 (1999)

    CAS  Article  Google Scholar 

  42. 42.

    C.W. Harmon, R.L. Grimm, T.M. McIntire, M.D. Peterson, B. Njegic, V.M. Angel, A. Alshawa, J.S. Underwood, D.J. Tobias, R.B. Gerber, M.S. Gordon, J.C. Hemminger, S.A. Nizkorodov, J. Phys. Chem. B 114, 2435 (2010)

    CAS  Article  Google Scholar 

  43. 43.

    F.D. Pope, B.J. Dennis-Smither, P.T. Griffiths, S.L. Clegg, R.A. Cox, J. Phys. Chem. A 114, 5335 (2010)

    CAS  Article  Google Scholar 

  44. 44.

    J.G. Kapsalis, in Water Activity: Theory and Applications to Food, ed. by L.R. Beuchat (Marcel Dekker Inc, New York, 1987), p. 173

    Google Scholar 

  45. 45.

    R.D. Andrade, R. Lemus, C.E. Perez, Vitae-Rev. La Fac. Quim. Farm. 18, 324 (2011)

    Google Scholar 

  46. 46.

    M.C. Allan, MSc Thesis (2014)

  47. 47.

    L.J. Mauer, L.S. Taylor, Pharm. Dev. Technol. 15, 582 (2010)

    CAS  Article  Google Scholar 

  48. 48.

    A.K. Salameh, L.J. Mauer, L.S. Taylor, J. Food Sci. 71, E10 (2006)

    CAS  Article  Google Scholar 

  49. 49.

    M. Dupas-Langlet, M. Benali, I. Pezron, K. Saleh, L. Metlas-Komunjer, J. Food Eng. 115, 391 (2013)

    CAS  Article  Google Scholar 

  50. 50.

    A.K. Salameh, L.S. Taylor, Pharm. Dev. Technol. 11, 453 (2006)

    CAS  Article  Google Scholar 

  51. 51.

    K. Kwok, L.J. Mauer, L.S. Taylor, J. Agric. Food Chem. 58, 11716 (2010)

    CAS  Article  Google Scholar 

  52. 52.

    A.K. Salameh, L.S. Taylor, J. Phys. Chem. B 110, 10190 (2006)

    CAS  Article  Google Scholar 

  53. 53.

    K.D. Ross, Food Technol. 29, 26 (1975)

    CAS  Google Scholar 

  54. 54.

    R.A. Lipasek, N. Li, S.J. Schmidt, L.S. Taylor, L.J. Mauer, J. Agric. Food Chem. 61, 9241 (2013)

    CAS  Article  Google Scholar 

  55. 55.

    M.J. Kontny, G. Zografi, J. Pharm. Sci. 74, 124 (1985)

    CAS  Article  Google Scholar 

  56. 56.

    C. Marcolli, B. Luo, T. Peter, J. Phys. Chem. A 108, 2216 (2004)

    CAS  Article  Google Scholar 

  57. 57.

    M. Kuwata, W. Shao, R. Lebouteiller, S.T. Martin, Atmos. Chem. Phys. 13, 5309 (2013)

    Article  Google Scholar 

  58. 58.

    M.N. Chan, S.M. Kreidenweis, C.K. Chan, Environ. Sci. Technol. 42, 3602 (2008)

    CAS  Article  Google Scholar 

  59. 59.

    M.T. Parsons, J. Geophys. Res. 109, 1 (2004)

    Article  Google Scholar 

  60. 60.

    P. Saxena, L.M. Hildemann, Environ. Sci. Technol. 31, 3318 (1997)

    CAS  Article  Google Scholar 

  61. 61.

    R. Zamora, A. Tabazadeh, D.M. Golden, M.Z. Jacobson, J. Geophys. Res. Atmos. 116, D23207 (2011)

    Google Scholar 

  62. 62.

    M.E. Wise, J.D. Surratt, D.B. Curtis, J.E. Shilling, M.A. Tolbert, J. Geophys. Res. 108, AAC4 (2003)

    Google Scholar 

  63. 63.

    S.L. Clegg, J.H. Seinfeld, J. Phys. Chem. A 110, 5718 (2006)

    CAS  Article  Google Scholar 

  64. 64.

    C.N. Cruz, S.N. Pandis, Environ. Sci. Technol. 34, 4313 (2000)

    CAS  Article  Google Scholar 

  65. 65.

    L. Treuel, S. Pederzani, R. Zellner, Phys. Chem. Chem. Phys. 11, 7976 (2009)

    CAS  Article  Google Scholar 

  66. 66.

    M. Song, C. Marcolli, U.K. Krieger, A. Zuend, T. Peter, Atmos. Chem. Phys. Discuss. 11, 29141 (2011)

    Article  Google Scholar 

  67. 67.

    L. Treuel, S. Schulze, T. Leisner, R. Zellner, Faraday Discuss. 137, 265 (2008)

    CAS  Article  Google Scholar 

  68. 68.

    A. Apelblat, M. Dov, J. Wisniak, J. Zabicky, J. Chem. Thermodyn. 27, 35 (1994)

    Article  Google Scholar 

  69. 69.

    M. Allan, L.S. Taylor, L.J. Mauer, Food Chem. 195, 2 (2016)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The research reported here was conducted as part of the CELCORR/CreCon consortium (http://www.celcorr.com) and supported by the Innovation Fund Denmark through the IN SPE project. The authors would like to acknowledge the industrial partners for funding support, their help and commitment received during the program run.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kamila Piotrowska.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Piotrowska, K., Verdingovas, V. & Ambat, R. Humidity-related failures in electronics: effect of binary mixtures of weak organic acid activators. J Mater Sci: Mater Electron 29, 17834–17852 (2018). https://doi.org/10.1007/s10854-018-9896-0

Download citation