Advertisement

Fabrication and enhancement in photoconductive response of \(\alpha\)-Fe2O3/graphene nanocomposites as anode material

  • Naveed Alam
  • Arif Ullah
  • Yaqoob Khan
  • Won Chun Oh
  • Kefayat UllahEmail author
Article

Abstract

We report a facile fabrication for the synthesis of graphene based α-Fe2O3 nanocomposites as anode material for photoelectrochemical water splitting. The effect of introduction of graphene as a solid-state electron material has been investigated in detail by controlling the synthesis parameters. The XRD pattern of hematite α-Fe2O3 nanoparticles were indexed to rhombohedral structure of α-Fe2O3, while the TEM images illustrate the flaky structure of graphene supported by hematite nanoparticles. The rGO/\(\alpha\)-Fe2O3 nanocomposites showed enhanced photocurrent of ~ 4 mA cm−2 at (1.23 V vs. RHE) under standard illumination conditions (AM 1.5 G 100 mW cm−2). The enhanced photoelectrochemical performance may be attributed to synergistic effect of graphene and \(\alpha\)-Fe2O3 by improving the charge transport properties. The optical properties were also observed to be influenced by the coupling of rGO and α-Fe2O3 composites as witnessed in the DRS spectra.

References

  1. 1.
    C.X. Kronawitter, I. Zegkinoglou, S.-H. Shen, P. Liao, I.S. Cho, O. Zandi, Y.-S. Liu, K. Lashgari, G. Westin, J.-H. Guo, F.J. Himpsel, E.A. Carter, X.L. Zheng, T.W. Hamann, B.E. Koel, S.S. Mao, L. Vayssieres, Titanium incorporation into hematite photoelectrodes: theoretical considerations and experimental observations. Energy Environ. Sci. 7, 3100–3121 (2014)CrossRefGoogle Scholar
  2. 2.
    J. Qingyi Zeng, J. Bai, L. Li, K. Xia, X. Huang, Li, B. Zhou, A novel in situ preparation method for nanostructured α-Fe2O3 films from electrodeposited Fe films for efficient photoelectrocatalytic water splitting and the degradation of organic pollutants. J. Mater. Chem. A 3, 4345–4353 (2015)CrossRefGoogle Scholar
  3. 3.
    S.T. Navale, G.D. Khuspe, M.A. Chougule, V.B. Patil, Camphor sulfonic acid doped PPy/α-Fe2O3 hybrid nanocomposites as NO2 sensors. RSC Adv. 4, 27998–28004 (2014)CrossRefGoogle Scholar
  4. 4.
    A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)CrossRefGoogle Scholar
  5. 5.
    M. Avudaithai, T. Kutty, Ultrafine powders of SrTiO3, from the hydrothermal preparation and their catalytic activity in the photolysis of water. Mater. Res. Bull. 22(5), 641–650 (1987)CrossRefGoogle Scholar
  6. 6.
    A. Kumar, P.G. Santangelo, N.S. Lewis, Electrolysis of water at strontium titanate (SrTiO3) photoelectrodes: distinguishing between the statistical and stochastic formalisms for electron-transfer processes in fuel-forming photoelectrochemical systems. J. Phys. Chem. 96(2), 834–842 (1992)CrossRefGoogle Scholar
  7. 7.
    T. Ohno, T. Tsubota, Y. Nakamura, K. Sayama, Preparation of S, C cation-codoped SrTiO3 and its photocatalytic activity under visible light. Appl. Catal. A 288(1), 74–79 (2005)CrossRefGoogle Scholar
  8. 8.
    B. Levy, W. Liu, S.E. Gilbert, Directed photocurrents in nanostructured TiO2/SnO2 heterojunction diodes. J. Phys. Chem. B 101(10), 1810–1816 (1997)CrossRefGoogle Scholar
  9. 9.
    W. Han, C. Zang, Z. Huang, H. Zhang, L. Ren, X. Qia, J. Zhong, Enhanced photocatalytic activities of three-dimensional graphene-based aerogel embedding TiO2 nanoparticles and loading MoS2 nanosheets as co-catalyst. Int. J. Hydrog. Energy 39(34), 19502–19512 (2014)CrossRefGoogle Scholar
  10. 10.
    K. Sivula, F. Le Formal, M. Grätzel, Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4(4), 432–449 (2011)CrossRefGoogle Scholar
  11. 11.
    R. Ling Cao, D. Wang, L. Wang, X. Xu, Li, Enhanced visible light photocatalytic activity for the hybrid MoS2/anatase TiO2(001) nanocomposite: a first-principles study. Chem. Phys. Lett. 612, 285–288 (2014)CrossRefGoogle Scholar
  12. 12.
    P.S. Lau, K.M. Ng, Carbon dioxide reforming of methane by solid state synthesis supported catalysts. Int. J. Hydrog. Energy 39(34), 19513–19518 (2014)CrossRefGoogle Scholar
  13. 13.
    S.H. Hsieh, W.J. Chen, C.T. Wu, Pt-TiO2/graphene photocatalysts for degradation of AO7 dye under visible light. Appl. Surf. Sci. 340, 9–17 (2015)CrossRefGoogle Scholar
  14. 14.
    W. Han, L. Rena, Z. Zhanga, X. Qia, Y. Liua, Z. Huanga, J. Zhonga, Graphene-supported flocculent-like TiO2 nanostructures for enhanced photoelectrochemical activity and photo degradation performance. Ceram. Int. 41(6), 7471–7477 (2015)CrossRefGoogle Scholar
  15. 15.
    W. Han, L. Ren, X. Qi, Y. Liu, X. Wei, Z. Huang, J. Zhong, Synthesis of CdS/ZnO/graphene composite with high-efficiency photoelectrochemical activities under solar radiation. Appl. Surf. Sci. 299, 12–18 (2014)CrossRefGoogle Scholar
  16. 16.
    S. Kefayat Ullah, S.-B. Ye, L. Jo, K.-Y. Zhu, W.-C. Cho, Oh, Optical and photocatalytic properties of novel heterogeneous PtSe2–graphene/TiO2 nanocomposites synthesized via ultrasonic assisted techniques, Ultrason. Sonochem. 21(5), 1849–1857 (2014)CrossRefGoogle Scholar
  17. 17.
    M.H. Pournaghi Azar, B. Habibi, Electro polymerization of aniline in acid media on the bare and chemically pre-treated aluminum electrodes: a comparative characterization of the polyaniline deposited electrodes. Electrochem. Acta 52, 4222–4230 (2007)CrossRefGoogle Scholar
  18. 18.
    P. Bollella, G. Fusco, D. Stevar, A glucose/oxygen, enzymatic fuel cell based on gold nanoparticles modified graphene screen-printed electrode. Proof-of-concept in human saliva. Sens. Actuators B 265, 921–930 (2018)CrossRefGoogle Scholar
  19. 19.
    K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Maaz, Synthesis and analytical applications of photoluminescent carbon nanosheet by exfoliation of graphite oxide without purification. J. Mater. Sci.: Mater. Electron. 27(12), 13080–13085 (2016)Google Scholar
  20. 20.
    W.C. Chen, T.C. Wen, A. Gopalan, Negative capacitance for polyaniline: an analysis via electrochemical impedance spectroscopy. Synth. Met. 128, 179–189 (2002)CrossRefGoogle Scholar
  21. 21.
    M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10, 751 (2010)CrossRefGoogle Scholar
  22. 22.
    X. Fuku, N. Matinise, M. Masikini, K. Kasinathan, M. Maaz, An electrochemically active green synthesized polycrystalline NiO/MgO catalyst: use in photo-catalytic applications. Mater. Res. Bull. 97, 457–465 (2018)CrossRefGoogle Scholar
  23. 23.
    K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Jayachandran, M. Maaz, Rice husks as a sustainable source of high quality nanostructured silica for high performance Li-ion battery requital by sol-gel method–a review, Adv. Mater. Lett. 7(9), 684–696 (2016)CrossRefGoogle Scholar
  24. 24.
    T. Huang, J. Long, M. Zhong, J. Jiang, X. Ye, Z. Lin, L. Li, The effects of low power density CO2 laser irradiation on graphene. Appl. Surf. Sci. 273, 502 (2013)CrossRefGoogle Scholar
  25. 25.
    Y. Wang, Z.H. Ni, T. Yu, Z.X. Shen, H.M. Wang, Y.H. Wu, W. Chen, A.T.S. Wee, Raman studies of monolayer graphene: the substrate effect. J. Phys. Chem. C 112, 10637 (2008)CrossRefGoogle Scholar
  26. 26.
    K. Ullah, Z. Lei, S. Ye, A. Ali, W.-C. Oh, Microwave synthesis of a CoSe2/graphene–TiO2 heterostructure for improved hydrogen evolution from aqueous solutions in the presence of sacrificial agents. RSC Adv. 5, 18841 (2015)CrossRefGoogle Scholar
  27. 27.
    G. Williams, B. Seger, P.V. Kamat, TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2(7), 1487–1491 (2008)CrossRefGoogle Scholar
  28. 28.
    J.S. Lee, K.H. You, C.B. Park, Highly photoactive, low band gap TiO2 nanoparticles wrapped by graphene. Adv. Mater. 24, 1084–1088 (2012)CrossRefGoogle Scholar
  29. 29.
    H. Choi, Y.-S. Chen, K.G. Stamplecoskie, P.V. Kamat, Boosting the photovoltage of dye-sensitized solar cells with, thiolated gold nanoclusters. J. Phys. Chem. Lett. 6(1), 217–223 (2015)CrossRefGoogle Scholar
  30. 30.
    L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520 (2009)CrossRefGoogle Scholar
  31. 31.
    K. Ullah, S. Ye, Z. Lei, K.-Y. Cho, W.-C. Oh, Synergistic effect of PtSe2 and graphene sheets supported by TiO2 as cocatalysts synthesized via microwave techniques for improved photocatalytic activity. Catal. Sci. Technol. 5, 184–198 (2015)CrossRefGoogle Scholar
  32. 32.
    K. Kaviyarasu, A. Ayeshamariam, E. Manikandan, J. Kennedy, R. Ladchumananandasivam, U.U. Gomes, M. Jayachandran, M. Maaza, Solution processing of CuSe quantum dots: photocatalytic activity under RhB for UV and visible-light solar irradiation. Mater. Sci. Eng. B 210, 1–9 (2016)CrossRefGoogle Scholar
  33. 33.
    G. Rahman, O.-S. Joo, Facile preparation of nanostructured α-Fe2O3 thin films with enhanced photoelectrochemical water splitting activity, J. Mater. Chem. A 1, 5554–5561 (2013)CrossRefGoogle Scholar
  34. 34.
    K. Kombaiah, J.Judith Vijaya, L. John Kennedy, M. Bououdina, K. Kaviyarasu, R. Jothi Ramalingam, M.A. Munusamy, A. AlArfaj, Effect of Cd2+ concentration on ZnFe2O4 nanoparticles on the structural, optical and magnetic properties. Optik 135, 190–199 (2017)CrossRefGoogle Scholar
  35. 35.
    L. Wang, Y. Park, P. Cui, S. Bak, H. Lee, S.M. Lee, H. Lee, Facile preparation of an n-type reduced graphene oxide field effect transistor at room temperature. Chem. Commun. 50, 1224–1226 (2014)CrossRefGoogle Scholar
  36. 36.
    Y.Y. Liang, D.Q. Wu, X.L. Feng, K. Mullen, Dispersion of graphene sheets in organic solvent supported by ionic interactions. Adv. Mater. 21, 1679 (2009)CrossRefGoogle Scholar
  37. 37.
    K. Yang, H.B. Peng, Y.H. Wen, N. Li, Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles. Appl. Surf. Sci. 256, 3093–3097 (2010)CrossRefGoogle Scholar
  38. 38.
    K. Ullah, L. Zhu, Z.D. Meng, S. Ye, S. Sarkar, W.C. Oh, Synthesis and characterization of novel PtSe2/graphene nanocomposites and its visible light driven catalytic properties. J. Mater. Sci. 49, 4139–4147 (2014)CrossRefGoogle Scholar
  39. 39.
    R. Rao, R. Podila, R. Tsuchikawa, J. Katoch, D. Tishler, A. Rao, I.M. Shigami, Effects of layer stacking on the combination raman modes in graphene. ACS Nano 5(3), 1594–1599 (2011)CrossRefGoogle Scholar
  40. 40.
    D. Kong, H. Wang, Z. Lu, Y. Cui, CoSe2 Nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 136(13), 4897–4900 (2014)CrossRefGoogle Scholar
  41. 41.
    R. Tauc, Grigorovici, A. Vancu, Optical properties and electronic structure of aamorphous germanium. Phys. Status Solidi (b) 15(2), 627–637 (1966)CrossRefGoogle Scholar
  42. 42.
    J. Low, J. Yu, Q. Li, B. Cheng, Enhanced visible light photocatalytic activity of plasmonic Ag and graphene Co-modified Bi2WO6 nanosheets. Phys. Chem. Chem. Phys. 16, 1111–1120 (2014)CrossRefGoogle Scholar
  43. 43.
    P.V. Kamat, Graphene-based nano architectures: anchoring semiconductor and metal nanoparticles on a two dimensional carbon support. J. Phys. Chem. Lett. 1, 520–527 (2010)CrossRefGoogle Scholar
  44. 44.
    P. Hu, Y.D. Posner, Y.B. David, D. Milstein, Reusable homogeneous catalytic system for hydrogen production from methanol and water. ACS Catal. 4(8), 2649–2652 (2014)CrossRefGoogle Scholar
  45. 45.
    C. Zhang, Q. Wu, X. Ke, J. Wang, X. Jin, S. Xue, Ultrathin hematite films deposited layer-by-layer on a TiO2 underlayer for efficient water splitting under visible light. Int. J. Hydrog. Energy 39(27), 14604–14612 (2014)CrossRefGoogle Scholar
  46. 46.
    Y. Zhao, Y. Li, R. Ma, M.J. Roe, D.G. McCartney, Y. Zhu, Growth and characterization of iron oxide nanorods/nanobelts prepared by a simple iron-water reaction. Small 2, 422–427 (2006)CrossRefGoogle Scholar
  47. 47.
    C. Chunlan Cao, H.W. Shen, S. Wang, S. Song, M. Wang, Improving photoelectrochemical performance by building Fe2O3 heterostructure on TiO2 nanorod arrays. Mater. Res. Bull. 70, 155–162 (2015)CrossRefGoogle Scholar
  48. 48.
    S.D. Tilley, M. Cornuz, K. Sivula, M. Grätzel, Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew. Chem. Int. Ed. 49, 6405–6408 (2010)CrossRefGoogle Scholar
  49. 49.
    C.Y. Cummings, F. Marken, L.M. Peter, K.G.U. Wijayantha, A.A. Tahir, New insights into water splitting at mesoporous α-Fe2O3 films: a study by modulated transmittance and impedance spectroscopies. J. Am. Chem. Soc. 134(2), 1228–1234 (2012)CrossRefGoogle Scholar
  50. 50.
    D.K. Zhong, M. Cornuz, K. Sivula, M. Graetzel, D.R. Gamelin, Photo-assisted electrodeposition of cobalt–phosphate (Co–Pi) catalyst on hematite photoanodes for solar water oxidation. Energy Environ. Sci. 4, 1759–1764 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Naveed Alam
    • 1
    • 2
  • Arif Ullah
    • 2
  • Yaqoob Khan
    • 3
  • Won Chun Oh
    • 4
  • Kefayat Ullah
    • 5
    Email author
  1. 1.Soochow Institute for Energy and Materials Innovation, College of Physics, Optoelectronics and EnergySoochow UniversitySuzhouChina
  2. 2.Department of PhysicsUniversity of MalakandChakdaraPakistan
  3. 3.Nanosciences and Catalysis DivisionNational Center for Physics (NCP)IslamabadPakistan
  4. 4.Department of Advanced Materials Science & EngineeringHanseo UniversitySeosanSouth Korea
  5. 5.Department of Applied Physical & Material SciencesUniversity of SwatSwatPakistan

Personalised recommendations