Skip to main content
Log in

Comprehensive investigation on direct and converse magnetoelectric effects in longitudinally magnetized and polarized laminate composites by equivalent circuit and experiments

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Asymmetrical equivalent circuits, making φmH as magnetic part for the direct magnetoelectric (DME) effect of magnetoelectric laminate composites of longitudinally magnetized and poled (L–L) mode, have been reported recently. In this paper, we developed a symmetrical magnetic–mechanical–electric equivalent circuit to study both the DME and converse magnetoelectric (CME) effects equivalently, predicting the DME and CME coefficients near the resonance frequency. The theoretical values are in good agreement with the corresponding experiments. The L–L mode laminate composites have higher DME voltage coefficient and CME coefficient in comparison with the longitudinally magnetized and transversely poled (L–T) mode. In particular, its voltage coefficient is almost ten times as large as that of the L–T mode composite. The results are significant for the fabrication of magnetoelectric transducer, energy capture device, electronically controlled magnetometers and magnetic field sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Petrov, V. Petrov, M. Bichurin, Y. Zhou, S. Priya, Modeling of dimensionally graded magnetoelectric energy harvester. J. Magn. Magn. Mater. 383, 246–249 (2015)

    Article  CAS  Google Scholar 

  2. S. Reis, M. Silva, N. Castro, Electronic optimization for an energy harvesting system based on magnetoelectric metglas/poly(vinylidene fluoride)/metglas composites. Smart Mater. Struct. 25, 085028 (2016)

    Article  Google Scholar 

  3. J. Ma, J. Hu, Z. Li, C.W. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23, 1062 (2011)

    Article  CAS  Google Scholar 

  4. H. Talleb, A. Gensbittel, Z. Ren, Multiphysics modeling of a magnetoelectric composite Rosen-type device. Compos. Struct. 137, 1–8 (2016)

    Article  Google Scholar 

  5. R. Brito-Pereira, C. Ribeiro, S. Lanceros-Mendez, P. Martins, Magnetoelectric response on Terfenol-D/P(VDF-TrFE) two-phase. Compos. B 20, 97–102 (2017)

    Article  Google Scholar 

  6. G. Wu, T. Nan, R. Zhang, N. Zhang, S. Li, N.X. Sun, Inequivalence of direct and converse magnetoelectric coupling at electromechanical resonance. Appl. Phys. Lett. 103, 182905 (2013)

    Article  Google Scholar 

  7. J.P. Zhou, Y. Yang, G.B. Zhang, J.H. Peng, P. Liu, Symmetric relationships between direct and converse magnetoelectric effects in laminate composites. Compos. Struct. 155, 107–117 (2016)

    Article  Google Scholar 

  8. J.L. Hockel, T. Wu, G.P. Carman, Voltage bias influence on the converse magnetoelectric effect of PZT/terfenol-D/PZT laminates. J. Appl. Phys. 109, 064106 (2011)

    Article  Google Scholar 

  9. J.P. Zhou, Y.X. Zhang, G.B. Zhang, P. Liu, Magnetodielectric effect and electric-induced magnetic permeability in magnetoelectric laminate composite under low inspiring signal. J. Appl. Phys. 113, 043907 (2013)

    Article  Google Scholar 

  10. J.P. Zhou, Y.J. Ma, G.B. Zhang, X.M. Chen, A uniform model for direct and converse magnetoelectric effect in laminated composite. Appl. Phys. Lett. 104, 202904 (2014)

    Article  Google Scholar 

  11. S.X. Dong, J. Cheng, J.F. Li, D. Viehland, Enhanced magnetoelectric effects in laminate composites of Terfenol-D/Pb(Zr,Ti)O3 under resonant drive. Appl. Phys. Lett. 83, 4812–4814 (2003)

    Article  CAS  Google Scholar 

  12. L. Ying, B.H. Bao, Theory and caculation of magnetoelectric effect in longitudinally polarized and magnetized laminate materials. Acta Phys. Sin. 60, 067504 (2011)

    Google Scholar 

  13. L.F. Xu, X. Feng, K. Sun, Z.Y. Liang, Q. Xu, Adjustability of resonance frequency by external magnetic field and bias electric field of sandwich magnetoelectric PZT/NFO/PZT composites. Appl. Phys. A 123, 497 (2017)

    Article  Google Scholar 

  14. H. Yang, G. Zhang, Y. Lin, Enhanced magnetoelectric properties of the laminated BaTiO3/CoFe2O4 composites. J. Alloy. Compd. 644, 390–397 (2015)

    Article  CAS  Google Scholar 

  15. L. Chen, P. Li, Y.M. Wen, Y. Zhu, Resonance magnetoelectric effect in an asymmetric magnetostrictive/piezoelectric trilayered composite structure. J. Alloy. Compd. 646, 1032–1035 (2015)

    Article  CAS  Google Scholar 

  16. L. Chen, P. Li, Y.M. Wen, Y. Zhu, Theoretical analyses of nonlinear magnetoelectric response in self-biased magnetostrictive/piezoelectric laminated composites. Compos. Struct. 119, 685–692 (2015)

    Article  Google Scholar 

  17. Z. Shi, L.Z. Chen, Y.S. Tong, Z.B. Zheng, S.Y. Yang, C.P. Cui, X.J. Liu, Phase drift of magnetoelectric effect in Terfenol-D/PZT composite materials. Acta Phys. Sin. 62, 017501 (2013)

    Google Scholar 

  18. T.I. Muchenik, E.J. Barbero, Charge, voltage, and work-conversion formulas for magnetoelectric laminated composites. Smart Mater. Struct. 24, 025039 (2015)

    Article  Google Scholar 

  19. X.J. Yu, T.Y. Wu, Z. Li, Wireless energy transfer system based on metglas/PFC magnetoelectric laminated composites. Acta Phys. Sin. 62, 058503 (2013)

    Google Scholar 

  20. S.X. Dong, D. Viehland, Longitudinal and transverse magnetoelectric voltage coefficients of magnetostrictive/piezoelectric laminate composite: theory. IEEE Tran. Ultrason. Ferroelectr. Freq. Control 50, 1253–1261 (2003)

    Article  Google Scholar 

  21. D.A. Filippova, G.S. Radchenko, T.O. Firsova, T.A. Galkin, A theory of the inverse magnetoelectric effect in layered magnetostrictive–piezoelectric structures. Phys. Solid State 59, 878–884 (2017)

    Article  Google Scholar 

  22. H.M. Zhou, X.L. Cui, A theoretical study of the nonlinear thermomagneto- electric coupling effect in magnetoelectric laminates. Smart Mater. Struct. 23, 105104 (2014)

    Google Scholar 

  23. Y. Shi, Y.W. Gao, Theoretical study on nonlinear magnetoelectric effect and harmonic distortion behavior in laminated composite. J. Alloy. Compd. 646, 351–359 (2015)

    Article  CAS  Google Scholar 

  24. Y. Shi, Modeling of nonlinear magnetoelectric coupling in layered magnetoelectric nanocomposites with surface effect. Compos. Struct. 185, 474–482 (2018)

    Article  Google Scholar 

  25. J.Z. Li, Y.M. Wen, P. Li, J. Yang, Modeling of magnetoelectric effects in magnetostrictive/piezoelectric laminated composites using the energy method. IEEE Trans. Magn. 53, 2500406 (2017)

    Google Scholar 

  26. Y. Xiao, H.M. Zhou, X.L. Cui, Nonlinear resonant magnetoelectric coupling effect with thermal, stress and magnetic loadings in laminated composites. Compos. Struct. 128, 35–41 (2015)

    Article  Google Scholar 

  27. H.M. Zhou, X.W. Ou, Y. Xiao, S.X. Qu, H.P. Wu, An analytical nonlinear magnetoelectric coupling model of laminated composites under combined pre-stress and magnetic bias loadings. Smart Mater. Struct. 22, 035018 (2013)

    Article  Google Scholar 

  28. Y. Wang, D. Hasanyan, M. Li, J. Gao, J. Li, D. Viehland, H. Luo, Theoretical model for geometry-dependent magnetoelectric effect in magnetostrictive/piezoelectric composites. J. Appl. Phys. 111, 124513 (2012)

    Article  Google Scholar 

  29. D. Hasanyan, Y. Wang, J. Gao, M. Li, Y. Shen, J. Li, D. Viehland, Modeling of resonant magneto-electric effect in a magnetostrictive and piezoelectric laminate composite structure coupled by a bonding material. J. Appl. Phys. 112, 064109 (2012)

    Article  Google Scholar 

  30. Y. Gao, J. Zhang, Nonlinear magnetoelectric transient responses of a circular-shaped magnetoelectric layered structure. Smart Mater. Struct. 22, 015015 (2013)

    Article  Google Scholar 

  31. S.X. Dong, J.F. Li, D. Viehland, A longitudinal-longitudinal mode Terfenol-D/Pb(Mg1/3Nb2/3)O3-PbTiO3 laminate composite. Appl. Phys. Lett. 85, 5305–5306 (2004)

    Article  CAS  Google Scholar 

  32. S.Y. Lin, Principle and Design of Ultrasonic Transducer (Science Press, Beijing, 2004)

    Google Scholar 

  33. E. Göran, Handbook of Giant Magnetostrictive Materials (Academic Press, New York, 1999)

    Google Scholar 

  34. G. Liu, S. Dong, Uniformity of direct and converse magnetoelectric effects in magnetostrictive–piezoelectric composites. Appl. Phys. Lett. 105, 122903 (2014)

    Article  Google Scholar 

  35. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51672168, 11804215), the Special Research Project of Shaanxi Provincial Education Department (No. 17JK0019), China Postdoctoral Science Foundation Funded Project (No. 2017M623105), the Science and Technology Project, Ankang University (No. 2017AYJC04), and the Scientific Research Fund for High Level Talents, Ankang University (No. 2015AYQDZR01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Ping Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Yao, X., Zhou, JP. et al. Comprehensive investigation on direct and converse magnetoelectric effects in longitudinally magnetized and polarized laminate composites by equivalent circuit and experiments. J Mater Sci: Mater Electron 29, 17706–17713 (2018). https://doi.org/10.1007/s10854-018-9876-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9876-4

Navigation