Skip to main content

Size dependent magnetic and antibacterial properties of solvothermally synthesized cuprous oxide (Cu2O) nanocubes

Abstract

Cuprous oxide (Cu2O) nanocubes were fruitfully synthesized via facile solvothermal route. The crystalline nature and structural confirmation of the synthesized nanocubes was revealed by XRD and Raman studies. The oxygen defects and luminescent abilities were explored by PL studies. The FTIR metal–oxygen vibrations present in Cu2O nanocubes was observed at 510 cm−1. The typical nanocube morphology and the decrease in particle size with NaOH concentration increase was revealed by SEM images. The particle sizes of the best performed nanocubes (2 µm) have been tested for antimicrobial properties. The particle size effect on improved diamagnetic behavior of 5 × 10−3 emu/g was reported for 6 µm scale range. The enhanced antibacterial properties against Gram-positive (Bacillus thuringiensis) and Gram-negative (Pseudomonas aeruginosa) bacteria were reported.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    K.M. Shrestha, C.M. Sorensen, K.J. Klabunde, Synthesis of CuO nanorods, reduction of CuO into Cu nanorods and diffuse reflectance measurements of CuO and Cu nanomaterials in the near infrared region. J. Phys. Chem. C 114, 14368–14376 (2010)

    CAS  Article  Google Scholar 

  2. 2.

    M. Yin, C.K. Wu, Y. Lou, C. Burda, J.T. Koberstein, Y. Zhu, S.O. Brien, Copper oxide nanocrystals. J. Am. Chem. Soc. 127, 9506–9511 (2005)

    CAS  Article  Google Scholar 

  3. 3.

    J.P. Espinos, J. Morales, A. Barranco, A. Caballero, J.P. Holgado, A.R.G. Elipe, Interface effects for Cu,CuO and Cu2O deposited on SiO2 and ZrO2, XPS determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2 catalysts. J. Phys. Chem. B 106, 6921–6929 (2002)

    CAS  Article  Google Scholar 

  4. 4.

    G.P. Pollack, D. Trivich, Photoelectric properties of cuprous oxide. J. Appl. Phys. 46, 163–172 (1975)

    CAS  Article  Google Scholar 

  5. 5.

    K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G.K. Paul, T. Sakurai, Thin film deposition of Cu2O and applications for solar cells. Sol. Energy 80, 715–722 (2006)

    CAS  Article  Google Scholar 

  6. 6.

    Y.Y. Su, R.M. Shemenski, Qualitative and quantitative identification of copper oxides. Surf. Interface Anal. 40, 1183–1189 (2008)

    CAS  Article  Google Scholar 

  7. 7.

    J. Ren, W. Wang, S. Sun, L. Zhang, L. Wang, J. Chang, Crystallography facet-dependent antibacterial activity: the case of Cu2O. Ind. Eng. Chem. Res. 50, 10366–10369 (2011)

    CAS  Article  Google Scholar 

  8. 8.

    D.E. Speliotis, Magnetic recording beyond the first 100 years. J. Magn. Magn. Mater. 193, 29–35 (1999)

    CAS  Article  Google Scholar 

  9. 9.

    R.H. Kodama, A.E. Berkowitz, Atomic scale magnetic modeling of oxide nanoparticles. Phys. Rev. B 59, 6321 (1999)

    CAS  Article  Google Scholar 

  10. 10.

    S. Asbrink, L.J. Norrby, A refinement of the crystal structure of copper oxide with a discussion of some exceptional esds. ActaCrystallogr. Sect. B 26, 8–15 (1970)

    CAS  Article  Google Scholar 

  11. 11.

    H.L. Schlafer, G. Gliemann, Basic Principles of Ligand Field Theory (Wiley, New York, 1969), p. 120

    Google Scholar 

  12. 12.

    Y.J. Lee, S. Kim, S.H. Park, H. Park, Y.D. Huh, Morphology-dependent antibacterial activities of Cu2O. Mater. Lett. 65, 818–820 (2011)

    CAS  Article  Google Scholar 

  13. 13.

    N. Perakis, A. Serres, Etude de la semi-conductivite de loxydecuivreuxdapres son comportementmagnetique entre 80 et 1000 K. J. Phys. Radium 16, 387 (1955)

    CAS  Article  Google Scholar 

  14. 14.

    M.O. Keeffe, F.S. Stone, The magnetochemistry and stoichiometry of the copper-oxygen system, Proc. R. Soc. A 267, 501 (1962)

    Article  Google Scholar 

  15. 15.

    S.M. Abdelbasir, S.M. ElSheikh, M.M. Rashad, D.A. Rayan, Controlling the optical and magnetic properties of nanostructured cuprous oxide synthesized from waste electric cables. Electron. Mater. Lett. 13391, 0056–0058 (2018)

    Google Scholar 

  16. 16.

    J. Wei, Z. Zang, Y. Zhang, M. Wang, J. Du, X. Tang, Enhanced performance of light-controlled conductive switching in hybrid cuprous oxide/reduced graphene oxide(Cu2O/rGO) nanocomposites. Opt. Lett. 42, 911–914 (2017)

    Article  Google Scholar 

  17. 17.

    W.V. da Costa, B.S. Pereira, M.C. Montanha, E. Kimura, A.A.W. Hechenleitner, D.M.F. de Oliveira, E.A.G. Pineda, Hybrid materials based on cotton fabric-Cu2O nanoparticles with antibacterial properties against S. aureus. Mater. Chem. Phys. 201, 339–343 (2017)

    Article  Google Scholar 

  18. 18.

    D.D. Gultekin, H. Nadaroglu, A.A. Gungor, N.H. Kishali, Biosynthesis and characterization of copper oxide nanoparticles using cimin grape (Vitis vinifera cv.) extract. Int. J. Second. Metabol. 4, 77–84 (2017)

    Article  Google Scholar 

  19. 19.

    M. Akilarasan, S. Kogularasu, S.M. Chen, T.W. Chen, M. Govidasamy, B.S. Lou, Effects of annealing temperature on crystal structure and glucose sensing properties of cuprous oxide. Sens. Actuators B 266, 655–663 (2018)

    Article  Google Scholar 

  20. 20.

    P.C. Rath, D. Saikia, M. Mishra, H.M. Kao, Exceptional catalytic performance of ultrafine Cu2O nanoparticles confined in cubic mesoporous carbon for 4-nitrophenol reduction. Appl. Surf. Sci 427, 1217–1226 (2018)

    CAS  Article  Google Scholar 

  21. 21.

    L. Chen, M. Liu, Y. Zhao, Q. Kou, Y. Wang, Y. Liu, Y. Zhang, J. Yang, Y.M. Jung, Enhanced catalyst activity by decorating of Au on Ag@Cu2O nanoshell. Appl. Surf. Sci. 435, 72–78 (2018)

    CAS  Article  Google Scholar 

  22. 22.

    D. Xu, C. Zhu, X. Meng, Z. Chen, Y. Li, D. Zhang, S. Zhu, Design and fabrication of Ag-CuO nanoparticles on reduced graphene oxide for nonenzymatic detection of glucose. Sens. Actuators B 265, 435–442 (2018)

    CAS  Article  Google Scholar 

  23. 23.

    M. Verma, V. Kumar, A. Katoch, Sputtering based synthesis of CuO nanoparticles and their structural, thermal and optical studies. Mater. Sci. Semicond. Process. 76, 55–60 (2018)

    CAS  Article  Google Scholar 

  24. 24.

    I.M.S. Araujo, R.R. Silva, G. Pacheco, W.R. Lustri, A. Tercjak, J. Gutierrez, J.R.S. Junior, F.H.C. Azevedo, G.S. Figueredo, M.L. Vega, S.J.L. Ribeiro, H.S. Barud, Hydrothermal synthesis of bacterial cellulose-copper oxide nanocomposites and evaluation of their antimicrobial activity. Carbohydr. Polym. 179, 341–349 (2018)

    CAS  Article  Google Scholar 

  25. 25.

    R. Yoo, S. Yoo, D. Lee, J. Kim, S. Cho, W. Lee, Highly selective detection of dimethyl methylphosphonate (DMMP) using CuO nanoparticles/ZnO flowers heterojunction. Sens. Actuators B 240, 1099–1105 (2017)

    CAS  Article  Google Scholar 

  26. 26.

    M. Sheikholeslami, D.D. Ganji, Numerical approach for magnetic nanofluid flow in a porous cavity using CuO nanoparticles. Mater. Des. 120, 382–393 (2017)

    CAS  Article  Google Scholar 

  27. 27.

    R. Jana, A. Dey, M. Das, J. Datta, P. Das, P.P. Ray, Improving performance of device made up of CuO nanoparticles synthesized by hydrothermal over the reflux method. Appl. Surf. Sci. 452, 155–164 (2018)

    CAS  Article  Google Scholar 

  28. 28.

    R. Naghikhani, G. Nabiyouni, D. Ghanbari, Simple and green synthesis of CuFe2O4-CuO nanocomposite using some natural extracts: photo-degradation and magnetic study of nanoparticles. J. Mater. Sci. 29, 4689–4703 (2018)

    CAS  Google Scholar 

  29. 29.

    X. Liu, Y. Sun, M. Yu, Y. Yin, B. Du, W. Tang, T. Jiang, B. Yang, W. Cao, M.N.R. Ashfold, Enhanced ethanol sensing properties of ultrathin ZnOnanosheets decorated with CuO nanoparticles. Sens. Actuators B 255, 3384–3390 (2018)

    CAS  Article  Google Scholar 

  30. 30.

    N. Siregar, I.P.T. Indrayana, E. Suharyadi, T. Kato, S. Iwata, Effect of synthesis temperature and NaOH concentration on microstructural and magnetic properties of Mn0.5Zn0.5Fe2O4 nanoparticles. Mater. Sci. Eng. 202, 012048 (2017)

    Google Scholar 

  31. 31.

    B.J. Rani, B. Saravanakumar, G. Ravi, V. Ganesh, A. Sakunthala, R. Yuvakkumar, Structural, optical and magnetic properties of NiO nanopowders. J. Nanosci. Nanotechnol. 18, 1–9 (2018)

    Article  Google Scholar 

  32. 32.

    J.F. Xu, W. Ji, Z.X. Shen, W.S. Li, S.H. Tang, X.R. Ye, D.Z. Jia, X.Q. Xin, Raman spectra of CuO nanocrytals. J. Raman Spectrosc. 30, 413–415 (1999)

    CAS  Article  Google Scholar 

  33. 33.

    J. Mao, J. He, X. Sun, W. Li, X. Lu, J. Gan, Z. Liu, Z. Gong, J. Chen, P. Liu, Y. Tong, Electrochemical synthesis of hierarchical Cu2O stars with enhanced photoelectrochemical properties. Electrochim. Acta 62, 1–7 (2012)

    CAS  Article  Google Scholar 

  34. 34.

    M.A. Dar, Q. Ahsanulhaq, Y.S. Kim, J.M. Sohn, H.S. Shin, Versatile synthesis of rectangular shaped nanobat like CuO nanostructures by hydrothermal method: structural properties and growth mechanism. Appl. Surf. Sci. 255, 6279–6284 (2009)

    CAS  Article  Google Scholar 

  35. 35.

    P. Chand, A. Gaur, A. Kumar, Structural, optical and ferroelectric behavior of CuO nanostructures synthesized at different pH values. Superlatt. Microstruct. 81, 243–247 (2015)

    Article  Google Scholar 

  36. 36.

    B.J. Rani, B. Saravanakumar, G. Ravi, V. Ganesh, S. Ravichandran, R. Yuvakkumar, Structural, optical and magnetic properties of CuFe2O4 nanoparticles. J. Mater. Sci. 29, 1975–1984 (2018)

    CAS  Google Scholar 

  37. 37.

    A. Sharma, R.K. Dutta, A. Roychowdhury, D. Das, Studies on structural defects in bare, PVP capped and TPPO capped copper oxide nanoparticles by positron annihilation lifetime spectroscopy and its impact on photocatalytic degradation of Rhodamine B. RSC Adv 6, 74812–74821 (2016)

    CAS  Article  Google Scholar 

  38. 38.

    B. Zhao, P. Liu, H. Zhuang, Z. Jiao, T. Fang, W. Xu, B. Lub, Y. Jiang, Hierarchical self-assembly of microscale leaf-like CuO on graphene sheets for high-performance electrochemical capacitors. J. Mater. Chem. A 1, 367 (2013)

    CAS  Article  Google Scholar 

  39. 39.

    R. Katirci, Effects of ZnO and NaOH in Zn-Ni bath. Surf. Eng. 31, 1 (2015)

    Article  Google Scholar 

  40. 40.

    K. Dhanabalan, A.T. Ravichandran, K. Ravichandran, S. Valanarasu, S. Mantha, Effect of Co doped material on the structural, optical and magnetic properties of Cu2O thin films by SILAR technique. J. Mater. Sci. 28, 4431–4439 (2017)

    CAS  Google Scholar 

  41. 41.

    C. Chen, L. He, L. Lai, H. Zhang, J. Lu, L. Guo, Y. Li, Magnetic properties of undoped Cu2O fine powders with magnetic impurities and/or cation vacancies. J. Phys. 21, 145601–145608 (2009)

    Google Scholar 

  42. 42.

    M. Srivastava, S. Chaubey, A.K. Ojha, Investigation on size dependent structural and magnetic behavior of nickel ferrite nanoparticles prepared by sol-gel and hydrothermal methods. Mater. Chem. Phys. 118, 174–180 (2009)

    CAS  Article  Google Scholar 

  43. 43.

    M.D. Marco, X.W. Wang, R.L. Snyder, J. Simmins, S. Bayya, M. White, M.J. Naughton, J. Appl. Phys. 73, 6287 (1993)

    CAS  Article  Google Scholar 

  44. 44.

    H. Pang, F. Gao, Q. Lu, Morphology effect on antibacterial activity of cuprous oxide. Chem. Commun. 9, 1076–1078 (2009)

    Article  Google Scholar 

  45. 45.

    K. Gopalakrishnan, C. Ramesh, V. Ragunathan, M. Thamilselvan, Antibacterial activity of Cu2O nanoparticles on e.coli synthesized from tridaxprocumbens leaf extract and surface coating with polyaniline. Dig. J. Nanomater. Biostruct. 7, 833–839 (2012)

    Google Scholar 

  46. 46.

    N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles an antimicrobial study. Sci. Technol. Adv. Mater. 9, 035004 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the Localization and Development Technology Platform for the Infectious Diseases Surveillance and the Detection Project at Kind Abdulaziz City for Science and Technology. This work was also supported by UGC Start-Up Research Grant No. F.30-326/2016 (BSR). The authors Fuad Ameen, S. AlNadhary are grateful to the Deanship of Scientific Research at King Saud University for funding this work through research group No. (RGP-1438-029).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to R. Yuvakkumar or Fuad Ameen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

AlYahya, S., Rani, B.J., Ravi, G. et al. Size dependent magnetic and antibacterial properties of solvothermally synthesized cuprous oxide (Cu2O) nanocubes. J Mater Sci: Mater Electron 29, 17622–17629 (2018). https://doi.org/10.1007/s10854-018-9865-7

Download citation