Skip to main content
Log in

Integrating third phase transition and CO/CO2 contamination in microwave tailored Bi2Mo1−xWxO6 nano materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

First layer Aurivillius Bismuth Molybdate Tungstate ceramic [Bi2Mo1−xWxO6 (BMoW); x = 0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08 and 0.10] compositions are prepared using deep penetrating microwave sintering in air. All samples show known perovskite phase formation just after 5 h calcinations at 575 °C. X-ray diffraction and transmission electron microscopy based energy dispersive spectroscopy are used to confirm the phase-purity and gross elemental concentration change besides particle size. Nearly double \(\varepsilon ^{\prime}\)-values are obtained for investigated BMoW materials compared to earlier reported values. Silver percolation through electrodes in bismuth oxide deficient surfaces of BMoW ceramic powders induces radio wave absorption in the frequency range 2 to 4 MHz. Characteristic third phase transition (\(\gamma \to \gamma ^{\prime\prime\prime}\)) of Bi2MoO6 material dissolves gradually on increasing tungsten concentration. The introduction of tungsten in BMo matrix increases the dipolar strength of MoO6 octahedrons bending against infrared absorption as evidenced from FTIR analysis. Additionally appearing FTIR peaks provide a strong indication of CO and CO2 contamination on exposed powder surfaces useful for photocatalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.W. Wolfe, R.E. Newham, M.I. Kay, Crystal structure of Bi2WO6. Solid State Commun. 7, 1797 (1969)

    Article  CAS  Google Scholar 

  2. L.H. Brixner, A.W. Sleight, L.H. Brixner (1973) Refined cell parameters of Ln2WO6-type rare earth tungstates. J. Solid State Chem. 7(4), 418

    Article  CAS  Google Scholar 

  3. A.F.V. Elzen, G.D. Rieck, Redetermination of the structure of Bi2MoO6, koechlinite. Acta Cryst. B29, 2436 (1973)

    Article  Google Scholar 

  4. R.G. Teller, J.F. Brazdil, R.K. Graselli, J.D. Jorgensen (1984) The structure of γ-bismuth molybdate Bi2MoO6 by powder neutron diffraction, Acta Cryst. C40, 2001

    CAS  Google Scholar 

  5. A. Watanabe, Polymorphism in Bi2WO6. J. Solid State Chem. 41, 160 (1982)

    Article  CAS  Google Scholar 

  6. F. Theobald, A. Laarif, A.W. Hewat, The structure of koechlinite bismuth molybdate—a controversy resolved by neutron diffraction. Ferroelectrics 56, 219 (1984)

    Article  CAS  Google Scholar 

  7. A.D. Rae, J.G. Thompson, R.L. Withers (1991) Structure refinement of commensurately modulated bismuth tungstate, Bi2WO6. Acta Cryst. B47, 870

    Article  CAS  Google Scholar 

  8. K.S. Knight, The crystal structure of ferroelectric Bi2WO6 at 961 K. Ferroelectrics 150, 319 (1993)

    Article  Google Scholar 

  9. R. Rangel, P. Bartolo-Perez, A. Gomez-Cortez, G. Diaz, D.H. Galvan (2002) Study of microstructure and catalytic activity of gama-Bi2MoO6 and Bi2WO6 compounds. Surf. Rev. Lett. 9(5–6), 1779

    Article  CAS  Google Scholar 

  10. A.K. Fisher, Vapor pressure of bismuth. J. Chem. Phys. 45, 375 (1966)

    Article  Google Scholar 

  11. B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature 401, 682 (1999)

    Article  CAS  Google Scholar 

  12. T. Takahashi, T. Esaka, H. Iwahara, Oxide ion conduction in the sintered oxides of MoO3-doped Bi2O3, J. Appl. Electrochem. 7(1), 31 (1977)

    Article  CAS  Google Scholar 

  13. V. Shrivastava, Microwave processed SrBi2Nb2O9 ferroelectric ceramic with controlled dielectric relaxation and metallic conduction, Ceram. Int. 42(8), 10122 (2016)

    Article  CAS  Google Scholar 

  14. D.H. Galvan, S. Fuentes, M. Avalos-Borja, L. Cota-Araiza, J.C. Reyes, E.A. Early, M.B. Maple, Structure and catalytic activity characterization of bismuth molybdate catalysts. Catal. Lett. 18, 273 (1993)

    Article  CAS  Google Scholar 

  15. D.R. Liden (2000–2001) CRC Handbook of Chemistry and Physics, 81st Edition

  16. M. Ohring, The Materials Science of Thin Films (Academic Press, London, 1992), p. 339

    Google Scholar 

  17. A. Castro, P. Begue, B. Jimenez, J. Ricote, R. Jimenez, J. Galy, New Bi2Mo1 – xWxO6 Solid Solution: Mechanosynthesis, Structural Study and Ferroelectric Properties of x = 0.75 Member. Chem. Mater. 15–17, 3395 (2003)

    Article  Google Scholar 

  18. B.D. Cullity, S.R. Stock, (2014) Elements of X-ray Diffraction, 3rd edn. (Addison-Wesley, Pearson Education Inc.), 99

  19. L. Ramajo, M. Castro, A. del Campo, J.F. Fernandez, F. Rubio-Marcos, Revealing the role of cationic displacement in potassium-sodium niobate lead-free piezoceramics by adding W6+ ions. J. Mater. Chem. C 3, 4168 (2015)

    Article  CAS  Google Scholar 

  20. V.I. Voronkova, E.P. Kharitonova, O.G. Rudnitskaya, Refinement of Bi2WO6 and Bi2MoO6 polymorphism. J. Alloy Compds. 487, 274 (2009)

    Article  CAS  Google Scholar 

  21. D.B. Williams, C.B. Carter, Transmission Electron Microscopy (Plenum Press, New York, 1996), pp. 267–278

    Book  Google Scholar 

  22. J.D. Ng, B. Lorber, J. Witz, A. Throbald-Dietrich, D. Kern, R. Giege, The crystallization of biological macromolecules from precipitates: evidence for Ostwald ripening. J. Cryst. Growth 168(1–4), 50 (1996)

    Article  CAS  Google Scholar 

  23. L. Zhou, M. Yu, J. Yang, Y. Wang, C. Yu, Nanosheet-based Bi2MoxW1−xO6 solid solutions with adjustable band gaps and enhanced visible-light-driven photocatalytic activities. J. Phys. Chem. C 114, 18812 (2010)

    Article  CAS  Google Scholar 

  24. R.J. Betsch, W.B. White, Vibrational spectra of bismuth oxide and sillenite-structure bismuth oxide derivatives. Spectrochim. Acta A 34, 505 (1978)

    Article  Google Scholar 

  25. G. Blasse, Vibrational spectra of solid solution series with ordered perovskite structure. J. Inorg. Nucl. Chem. 37, 1347 (1975)

    Article  CAS  Google Scholar 

  26. F.D. Hardcastle, I.E. Wachs, Determination of molybdenum-oxygen bond distances and bond orders by Raman spectroscopy. J. Raman Spectrosc. 21, 683 (1990)

    Article  CAS  Google Scholar 

  27. E.I. Ross-Medgaarden, I.E. Wachs, Structure determination of bulk and surface tungsten oxides with UV-Vis diffuse reflectance spectroscopy and raman spectroscopy. J. Phys. Chem. C 111, 15089 (2007)

    Article  CAS  Google Scholar 

  28. S. Lanfredi, D.H.M. Genova, I.A.O. Brito, A.R.F. Lima, M.A.L. Nobre, Structural characterization and curie temperature determination of a sodium strontium niobate ferroelectric nanostructured powder, J. Solid State Chem. 184, 990 (2011)

    Article  CAS  Google Scholar 

  29. R.K. Grasselli, A.W. Sleight (1991) Proceedings of the ACS Symposium on structure activity relationships in heterogeneous catalysis, Boston, MA, April 22–27, 1990, Elsevier Science Publishers B.V., New York

  30. O. Seiferth, K. Wolter, B. Dillmann, G. Klivenyi, H.J. Freund, D. Scarano, A. Zecchina, IR Investigations of CO2 adsorption on chromia surfaces: Cr2O3 (001)/Cr (110) versus polycrystalline alpha-Cr2O3. Surf. Sci. 421, 176 (1999)

    Article  CAS  Google Scholar 

  31. A.R.Von Hippel, Dielectrics and Waves (Chapman & Hall Ltd., New York, 1954), Sec.22, 174

    Google Scholar 

  32. I.S. Zheludev, Physics of Crystalline Dielectrics, 2 (Plenum Press, New York, 1971), 462–465, 478

    Book  Google Scholar 

  33. S.R. Nagel, S.E. Schnatterly, Frequency dependence of the Drude relaxation time in metal films. Phys. Rev. B 9(4), 1299 (1974)

    Article  CAS  Google Scholar 

  34. C.W. Nan, Y. Shen, J.P. Ma, Physical properties of composites near percolation. Annu. Rev. Mater. Res. 40, 131 (2010)

    Article  CAS  Google Scholar 

  35. Z.-C. Shi, F. Mao, J. Wang, R. Fan, X. Wang, Percolative silver/alumina composites with radio frequency dielectric resonance-induced negative permittivity. RSC Adv. 5, 107307 (2015)

    Article  CAS  Google Scholar 

  36. L. Zhang, W. Wang, X. Wang, P. Bass, Z.-Y. Cheng, Metal-polymer nanocomposites with high percolation threshold and high dielectric constant. Appl. Phys. Lett. 103, 232903 (2013)

    Article  Google Scholar 

  37. A. Watanbe, H. Kodama (1985) Polymorphic transformations of Bi2MoO6. J. Solid State Chem. 35(2), 240

    Article  Google Scholar 

  38. A. Roshanghias, A. Yakymovych, J. Bernardi, H. Ipser, Synthesis and Thermal Behaviour of tin-based Alloy (Sn-Ag-Cu) nano particles. Nanoscale 7, 5843 (2015)

    Article  CAS  Google Scholar 

  39. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267–5613, 673 (1977)

    Article  Google Scholar 

  40. A.K. Jonscher, Analysis of the alternating current properties of ionic conductors. J. Mater. Sci. 13(2), 553 (1978)

    Article  CAS  Google Scholar 

  41. R. Dridi, I. Saafi, A. Mhamdi, A. Matri, A. Yumak, M.H. Lakhdar, A. Amlouk, K. Boubaker, M. Amlouk, Structural, optical and AC conductivity studies on alloy ZnO-Zn2SnO4 thin films. J. Alloys Compds. 634, 179 (2015)

    Article  CAS  Google Scholar 

  42. J. Lv, W. Gao, J. Li, T. Li, C. Long, X. Lou, J. Wu, Large strain and strain memory effect in bismuth ferrite lead-free ceramics. J. Mater. Chem. C 5, 9528 (2017)

    Article  CAS  Google Scholar 

  43. S. Luo, Y. Noguchi, M. Miyayama, T. Kudo, Rietveld analysis and dielectric properties of Bi2WO6-Bi4Ti3O12 ferroelectric system. Mater. Res. Bull. 36, 531 (2001)

    Article  CAS  Google Scholar 

  44. T. Zeng, H. Yan, H. Ning, J. Zeng, M.J. Reece (2009) Piezoelectric and ferroelectric properties of bismuth tungstate ceramics fabricated by spark plasma sintering. J. Am. Ceram. Soc. 92(12), 3108

    Article  CAS  Google Scholar 

  45. J.G. Thompson, S. Schmid, R.L. Withers, A.D. Rae, J.D. Fitz Gerald, Comparison of crystal structure of gamma Bi2MoO6 and Bi2WO6. J. Solid State Chem. 101, 309 (1992)

    Article  CAS  Google Scholar 

  46. F. Han, Y. Bai, L. Qiao, D. Guo, A systematic modification of the large electrocaloric effect within a broad temperature range in rare-earth doped BaTiO3 ceramics. J. Mater. Chem. C 4, 1842 (2016)

    Article  CAS  Google Scholar 

  47. V.K. Yanovskii, V.I. Voronlkova, Polymorphism and properties of Bi2WO6 and Bi2MoO6. Phys. Status Solidi A 93, 57 (1986)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge S.B. Srivastava (Graduate student) and Dr.S.P. Singh (both from SNU) for helping in thin film contact formation, Dr. Dileep Kumar, Mr. Suresh Bhardwaj, Dr. A.M. Awasthi and Dr. V.R. Reddy (all from UGC-DAE CSR Indore) for permitting us to record DSC and low frequency ferroelectric measurements. Authors also acknowledge the contributions of Dr. S. Amirthpandian (IGCAR-Kalapakkam) and Dr. Aloke Kanjilal (SNU) for providing TEM-EDS data and helping with results analysis respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaibhav Shrivastava.

Ethics declarations

Conflict of interest

The authors declare that the there are no conflicts of interest towards any individual or organization.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrivastava, V., Pritam, A. & Joshi, A. Integrating third phase transition and CO/CO2 contamination in microwave tailored Bi2Mo1−xWxO6 nano materials. J Mater Sci: Mater Electron 29, 17388–17396 (2018). https://doi.org/10.1007/s10854-018-9836-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9836-z

Navigation