Skip to main content
Log in

Photocatalytic and semiconducting performance of La modified M-type lead hexaferrite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

La0.2Pb0.7Fe12O19 (LaPbM), a traditional M-type hexaferrite with permanent magnets, was revealed to be a semiconductor by optical spectroscopy. The direct and indirect band gap energies were determined to be 1.70 eV and 0.72 eV, respectively. The Raman spectrum with nine phonon lines are indicative characterization of LaPbM and clearly distinguishes from that of α-Fe2O3 and γ-Fe2O3. Another type of expression for the semiconductor characterization of LaPbM is its photocatalytic activity upon degradation of Methylene Blue (MB) under visible light illumination. Gradually, with an increase in the duration of photodegradation reaction, the color of the MB solution changes from deep blue to pale white and the optical absorption coefficient decreases rapidly. The degradation duration was cut in half when graphen@La0.2Pb0.7Fe12O19 was used as the photocatalytic system. This structure reduced charge recombination and thus enhanced the reactivity. Graphene greatly improves the degradation rate and efficiency of LaPbM through electron transfer. These results provide a new insight into the high performance of visible-light responsive photocatalysis of LaPbM and facilitates its application in environmental protection issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Dai, L. Lu, G. Dawson, ‎J. Mater. Eng. Perform. 2, 1035 (2013)

    Article  Google Scholar 

  2. R. Bauer, G. Waldner, H. Fallmann, S. Hager, M. Klare, T. Krutzler et al., Catal. Today 53, 131–144 (1999)

    Article  CAS  Google Scholar 

  3. L. Liu, G. Zhang, L. Wang, T. Huang, L. Qin, Ind. Eng. Chem. Res. 50, 7219–7227 (2011)

    Article  CAS  Google Scholar 

  4. Z.J. Gu, T.Y. Zhai, B.F. Gao, X.H. Sheng, Y.B. Wang, H.B. Fu, Y. Ma, J.N. Yao, J. Phys. Chem. B 110, 23829–23836 (2017)

    Article  Google Scholar 

  5. W.H. Cheung, Y.S. Szeto, G. McKay, Bioresour. Technol. 100, 1143–1148 (2009)

    Article  CAS  Google Scholar 

  6. V.E. Van, A. Zwijnenburg, W. van der Meer, H. Temmink, Water Res. 42, 4334–4340 (2008)

    Article  Google Scholar 

  7. P. Dua, A. Bueno-Lo´ pez, M. Verbaas, A.R. Almeida, M. Makkee, J.A. Moulijn, G. Mul, J. Catal. 260, 75–80 (2008)

    Article  Google Scholar 

  8. J. Bohannon, Running Out of Water and Time. Science 313, 1085–1087 (2006)

    Article  CAS  Google Scholar 

  9. Y. Wang, R. Shi, J. Lin, Y. Zhu, Appl. Catal. B 100, 179–183 (2010)

    Article  CAS  Google Scholar 

  10. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269–271 (2001)

    Article  CAS  Google Scholar 

  11. D. Zhao, G. Sheng, C. Chen, X. Wang, Appl. Catal. B 303, 111–112 (2012)

    Google Scholar 

  12. M.A. Fox, M.T. Dulay, Chem. Rev. 93, 341–357 (1993)

    Article  CAS  Google Scholar 

  13. K. Vinodgopal, D.E. Wynkoop, P.V. Kamat, Environ. Sci. Technol. 30, 1660–1666 (1996)

    Article  CAS  Google Scholar 

  14. D. Zhao, C.C. Chen, Y. Wang, W.H. Ma, J.C. Zhao, T. Rajh, L. Zang, Environ. Sci. Technol. 42, 308–314 (2008)

    Article  CAS  Google Scholar 

  15. A. Goyal, S. Bansal, S. Singhal, Inter. J. Hydrog. Energy 39, 4895–4908 (2014)

    Article  CAS  Google Scholar 

  16. Y.H. Li, M.Y. Zhao, N. Zhang, R.J. Li, J.X. Chen, J. Alloys Compd. 643, 106–110 (2015)

    Article  CAS  Google Scholar 

  17. J.F. Sun, Z.P. Li, J.Q. Wang, W. Hong, P.W. Gong, P. Wen, Z.F. Wang, S.R. Yang, J. Alloys Compd. 643, 231–238 (2015)

    Article  CAS  Google Scholar 

  18. Q.Q. Yin, R. Qiao, Z.Q. Li, X.L. Zhang, L.L. Zhu, J. Alloys Compd. 618, 318–325 (2015)

    Article  CAS  Google Scholar 

  19. W. Razaa, M.M. Haquea, M. Muneera, M. Fleischb, A. Hakkib, D. Bahnemann, J. Alloys Compd. 632, 837–844 (2015)

    Article  Google Scholar 

  20. H. Huang, L. Liu, Y. Zhang, N. Tian, J. Alloys Compd. 619, 807–811 (2015)

    Article  CAS  Google Scholar 

  21. Z. Zou, H. Arakawa, J. Photochem. Photobiol. A 158, 145–162 (2003)

    Article  CAS  Google Scholar 

  22. L. Yang, J. Wang, Y. Wan, Y. Li, H. Xie, H. Cheng, H.J. Seo, J. Alloys. Compd. 664, 756–763 (2016)

    Article  CAS  Google Scholar 

  23. J. Zhao, Q. Lu, M. Wei, C. Wang, J. Alloys Compd. 646, 417–424 (2015)

    Article  CAS  Google Scholar 

  24. J.H. Bi, L. Wu, Y.F. Zhang, Z.H. Li, J.Q. Li, X.Z. Fu, Appl. Catal. B 91, 135–143 (2009)

    Article  CAS  Google Scholar 

  25. L. Zhang, X.F. Cao, Y.L. Ma, X.T. Chen, Z.L. Xue, New J. Chem. 34, 2027–2033 (2010)

    Article  CAS  Google Scholar 

  26. S. Singh, B.C. Yadav, V.D. Gupta, P.K. Dwivedi, Mater. Res. 47, 3538–3547 (2012)

    CAS  Google Scholar 

  27. H. Yang, J. Yan, Z. Lu, X. Chenga, Y. Tanga, J. Alloys Compd. 476, 715–719 (2009)

    Article  CAS  Google Scholar 

  28. H. Kojima, Ferromagnetic Materials, vol. 3, (North Holland, New York, 1982), p. 305

  29. M.G. Naseri, E.B. Saion, H.A. Ahangar, A.H. Shaari, Mater. Res. Bull. 48, 1439–1446 (2013)

    Article  CAS  Google Scholar 

  30. M. Matsuoka, M. Naoe, J. Appl. Phys. 57, 4040–4042 (1985)

    Article  CAS  Google Scholar 

  31. H. Zaquine, J.C. Benazizi, Mage, J. Appl. Phys. 64, 5822–5824 (1988)

    Article  CAS  Google Scholar 

  32. E. Lacroix, P. Gerard, G. Marest, M. Dupuy, J. Appl. Phys. 69, 4770–4772 (1991)

    Article  CAS  Google Scholar 

  33. Y.K. Hong, H.S. Jung, J. Appl. Phys. 85, 5549–5551 (1999)

    Article  CAS  Google Scholar 

  34. R.M. Garcia, E.R. Ruiz, E.E. Rams, Mater. Lett. 50, 183 (2001)

    Article  Google Scholar 

  35. O. Heczko, R. Gerber, Z. Simsa, Thin Solid Films 358, 206 (2000)

    Article  CAS  Google Scholar 

  36. O. Ogasawara, M.A.S. Oliveira, J. Magn. Magn. Mater. 147, 217 (2000)

    Google Scholar 

  37. S. Che, J. Wang, Q.W. Chen, J. Phys. 15, L335 (2003)

    CAS  Google Scholar 

  38. Y. Huang, Master Degree Thesis, Wuhan University of Technology (2017)

  39. S. Prathapa, W. Madhuri, J. Magn. Magn. Mater. 430, 114 (2017)

    Article  Google Scholar 

  40. D. Ghanbari, S. Sharifi, A. Naraghi, G. Nabiyouni, J. Mater. Sci. 27, 5315 (2016)

    CAS  Google Scholar 

  41. S. Saffarzadeh, G. Nabiyouni, J. Mater. Sci. 27, 13338 (2016)

    CAS  Google Scholar 

  42. N. Asiabani, G. Nabiyouni, S. Khaghani, D. Ghanbari, J. Mater. Sci. 28, 1101 (2017)

    CAS  Google Scholar 

  43. A. Shabani, G. Nabiyouni, J. Saffari, D. Ghanbari, J. Mater. Sci. 27, 8661 (2016)

    CAS  Google Scholar 

  44. A. Rezaei, G. Nabiyouni, D. Ghanbari, J. Mater. Sci. 27, 13338 (2016)

    Google Scholar 

  45. J. Saffari, N. Mir, D. Ghanbari, K. Khandan-Barani, A. Hassan-abadi, M.R. Hosseini-Tabatabaei, J. Mater. Sci. 26, 9591 (2015)

    CAS  Google Scholar 

  46. J. Kreisel, G. Lucazeau, H. Vincent, J. Solid State Chem. 137, 127 (1998)

    Article  CAS  Google Scholar 

  47. M.V. Rane, D. Bahadur, C.M. Srivastava, J. Phys. D 32 2001 (2001)

    Article  Google Scholar 

  48. M.S. Chen, Z.X. Shen, X.Y. Liu, J. Wang, J. Mater. Res. 15, 483 (2000)

    Article  CAS  Google Scholar 

  49. N. Yang, H. Yang, J. Jia, X. Pang, J. Alloys. Comp. 438, 263 (2007)

    Article  CAS  Google Scholar 

  50. D.L.A. de Faria, S. Venaü ncio Silva, M.T. de Oliveira, J. Raman Spec. 28, 873 (1997)

    Article  Google Scholar 

  51. G.L. Tan, W. Li, J. Am. Ceram. Soc. 98, 1812 (2015)

    Article  CAS  Google Scholar 

  52. R.W. Matthews, J. Chem. Soc. Faraday Trans. 85, 1291 (1989)

    Article  CAS  Google Scholar 

  53. S. Lakshmi, R. Renganathan, S. Fujita, J. Photochem. Photobio. A 88, 163 (1985)

    Article  Google Scholar 

  54. K. Sopajaree, S.A. Qasim, S. Basak, K. Rajeshwar, J. Appl. Electrochem. 29, 533 (1999)

    Article  CAS  Google Scholar 

  55. S.K. Ray, D. Dhakal, Y.K. Kshetri, S.W. Lee, J. Photochem. Photobio. A 348, 18 (2017)

    Article  CAS  Google Scholar 

  56. G. Li, K.A. Gray, Chem. Phys. 339, 173 (2007)

    Article  CAS  Google Scholar 

  57. J.M. Carlsson, Nat. Mater. 6, 801 (2007)

    Article  CAS  Google Scholar 

  58. J.-C. Charlier, P.C. Eklund, J. Zhu, A.C. Ferrari, Electron and phonon properties of graphene (Springer, Germany, Berlin/Heidelberg, 2008)

    Google Scholar 

Download references

Acknowledgements

The authors appreciate Dr Xiaoguang Huang for the support of optical spectrum and photocatalytic measurements. The authors acknowledge the financial support from the National Natural Science Foundation of China under Grant No. 11774276.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Debesh Devadutta Mishra or Guolong Tan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 72 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, D.D., Tan, G. Photocatalytic and semiconducting performance of La modified M-type lead hexaferrite. J Mater Sci: Mater Electron 29, 17287–17295 (2018). https://doi.org/10.1007/s10854-018-9823-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9823-4

Navigation