Skip to main content
Log in

Phase structure, electrical properties, and component stability in (1 − x)K0.40Na0.60Nb0.96Sb0.04O3x(Bi0.92Nd0.08)0.5Na0.5ZrO3 lead-free ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(1 − x)K0.40Na0.60Nb0.96Sb0.04O3x(Bi0.92Nd0.08)0.5Na0.5ZrO3 (KNNS–xBNNZ) lead-free piezoceramics have been synthesized by a conventional solid state sintering method, and the effects of BNNZ content on their phase structure and electrical properties were investigated. The phase boundary of rhombohedral–orthorhombic–tetragonal (R–O–T) has been formed in the composition range of 0.030 ≤ x ≤ 0.040. An optimal comprehensive performance (e.g., d33 ~ 470 ± 10 pC/N, kp ~ 0.50 ± 0.02, TC ~ 283 °C, εr ~ 1950, tanδ ~ 0.043, Strain ~ 0.135%, and d33* ~ 450 pm/V) is obtained in the ceramics with x = 0.035. Moreover, a relatively good component stability of piezoelectric properties (d33 ~ 402–470 pC/N, kp ~ 0.485–0.524, Strain ~ 0.133–0.135%, and d33* ~ 443–450 pm/V) is gained in a broad component range from 0.030 to 0.045, which is benefited from the contribution of multiphase boundary (R–O–T, R–T). Therefore, we believe that KNNS–xBNNZ ceramics opens a window for the practical applications in piezoelectric material markets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic, New York, 1971)

    Google Scholar 

  2. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004)

    Article  CAS  Google Scholar 

  3. J.G. Wu, D.Q. Xiao, J.G. Zhu, Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115, 2559–2595 (2015)

    Article  CAS  Google Scholar 

  4. K. Xu, J. Li, X. Lv, J.G. Wu, X.X. Zhang, D.Q. Xiao, J.G. Zhu, Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics. Adv. Mater. 28(38), 8519–8523 (2016)

    Article  CAS  Google Scholar 

  5. B. Wu, H.J. Wu, J.G. Wu, D.Q. Xiao, J.G. Zhu, S.J. Pennycook, Giant piezoelectricity and high curie temperature in nanostructured alkali niobate lead-free piezoceramics through phase coexistence. J. Am. Chem. Soc. 138, 15459–15464 (2016)

    Article  CAS  Google Scholar 

  6. X.P. Wang, J.G. Wu, D.Q. Xiao, J.G. Zhu, X.J. Cheng, T. Zheng, B.Y. Zhang, X.J. Lou, X.J. Wang, Giant piezoelectricity in potassium–sodium niobate lead-free ceramics. J. Am. Chem. Soc. 136, 2905–2910 (2014)

    Article  CAS  Google Scholar 

  7. T. Zheng, J.G. Wu, X.J. Cheng, X.P. Wang, B.Y. Zhang, D.Q. Xiao, J.G. Zhu, X.J. Lou, Wide phase boundary zone, piezoelectric properties, and stability in 0.97(K0.4Na0.6)(Nb1–xSbx)O3–0.03Bi0.5Li0.5ZrO3 lead-free ceramics. Dalton T. 43(25), 9419–9426 (2014)

    Article  CAS  Google Scholar 

  8. T. Zheng, J.G. Wu, X.J. Cheng, X.P. Wang, B.Y. Zhang, D.Q. Xiao, J.G. Zhu, X.J. Lou, X.J. Wang, New potassium-sodium niobate material system: a giant d 33 and high T C lead-free piezoelectric. Dalton T. 43(30), 11759–11766 (2014)

    Article  CAS  Google Scholar 

  9. K. Wang, J.F. Li, Analysis of crystallographic evolution in (Na, K)NbO3-based lead-free piezoceramics by X-ray diffraction. Appl. Phys. Lett. 91, 262902 (2007)

    Article  Google Scholar 

  10. B. Wu, J.G. Wu, D.Q. Xiao, J.G. Zhu, Modification of both d 33 and T C in a potassium–sodium niobate ternary system. Dalton T. 44(48), 21141–21152 (2015)

    Article  CAS  Google Scholar 

  11. Y. Guo, K.I. Kakimoto, H. Ohsato, Mater. Lett. 59, 224–241 (2005)

    Google Scholar 

  12. M.H. Zhang, K. Wang, Y.J. Du, G. Dai, W. Sun, G. Li, D. Hu, H.C. Thong, C.L. Zhao, X.Q. Xi, Z.X. Yue, J.F. Li, High and temperature-insensitive piezoelectric strain in alkali niobate lead-free perovskite. J. Am. Chem. Soc. 139(10), 3889–3895 (2017)

    Article  CAS  Google Scholar 

  13. P. Zhao, B.P. Zhang, High piezoelectric d 33 coefficient in Li/Ta/Sb-codoped lead-free (Na, K)NbO3 ceramics sintered at optimal temperature. J. Am. Ceram. Soc. 91, 3078–3081 (2008)

    Article  CAS  Google Scholar 

  14. Z. Wang, D.Q. Xiao, J.G. Wu, M. Xiao, F.X. Li, J.G. Zhu, New lead-free (1-x)(K0.5Na0.5)NbO3x(Bi0.5Na0.5)ZrO3 ceramics with high piezoelectricity. J. Am. Ceram. Soc. 97(3), 688–690 (2014)

    Article  CAS  Google Scholar 

  15. T. Zheng, Y. Zu, J. Wu, Composition dependence of phase structure and electrical properties in lead-free (1-x)(K0.42Na0.585)(Nb1–ySby)O3-xBi0.5K0.5ZrO3 piezoceramics. J. Alloys Compd. 647, 927–934 (2015)

    Article  CAS  Google Scholar 

  16. X.P. Wang, J.G. Wu, X. Lv, H. Tao, X.J. Cheng, T. Zheng, B.Y. Zhang, D.Q. Xiao, J.G. Zhu, Phase structure, piezoelectric properties, and stability of new K0.48Na0.52NbO3–Bi0.5Ag0.5ZrO3 lead-free ceramics. J. Mater. Sci.: Mater. Electron. 25, 3219–3225 (2014)

    CAS  Google Scholar 

  17. F.Z. Yao, K. Wang, W. Jo, Y.G. Webber, T.P. Comyn, J.X. Ding, B. Xu, L.Q. Cheng, M.P. Zheng, Y.D. Hou, J.F. Li, Diffused phase transition boosts thermal stability of high-performance lead-free piezoelectrics. Adv. Funct. Mater. 26, 1217–1224 (2016)

    Article  CAS  Google Scholar 

  18. F.Z. Yao, Q. Yu, K. Wang, Q. Li, J.F. Li, Ferroelectric domain morphology and temperature-dependent piezoelectricity of (K, Na, Li)(Nb, Ta, Sb)O3 lead-free piezoceramics. RSC Adv. 4, 20062–20068 (2014)

    Article  CAS  Google Scholar 

  19. T. Zheng, H.J. Wu, Y. Yuan, X. Lv, Q. Li, T. Men, C.L. Zhao, D.Q. Xiao, J.G. Wu, K. Wang, J.F. Li, Y.L. Gu, J.G. Zhu, S.J. Pennycook, The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy Environ Sci 10(2), 528–537 (2017)

    Article  CAS  Google Scholar 

  20. B. Wu, J. Ma, W.J. Wu, M. Chen, Y.C. Ding, Enhanced electrical properties, phase structure, and temperature-stable dielectric of (K0.48Na0.52)NbO3-Bi0.5Li0.5ZrO3 ceramics. Ceram. Int. 44(1), 1172–1175 (2018)

    Article  CAS  Google Scholar 

  21. R. Bathelt, T. Soller, K. Benkert, C. Schuh, A. Roosen, Neodymium doping of KNNLT. J. Eur. Ceram. Soc. 32, 3767–3772 (2012)

    Article  CAS  Google Scholar 

  22. H. Du, W. Zhou, F. Luo, D. Zhu, S. Qu, Y. Li, Z. Pei, Design and electrical properties’ investigation of (K0.5Na0.5)NbO3–BiMeO3 lead-free piezoelectric ceramics. J. Appl. Phys. 104(3), 034104 (2008)

    Article  Google Scholar 

  23. J. Noh, J. Yoo, Dielectric and piezoelectric properties of (K0.5Na0.5)(Nb0.97Sb0.03)O3ceramics doped with Bi2O3. J. Electroceram. 29(2), 144–148 (2012)

    Article  CAS  Google Scholar 

  24. H. Du, F. Luo, S. Qu, Z. Pei, D. Zhu, W. Zhou, Phase structure, microstructure, and electrical properties of bismuth modified potassium-sodium niobium lead-free ceramics. J. Appl. Phys. 102, 054102 (2007)

    Article  Google Scholar 

  25. B. Malic, J. Bernard, A. Bencan, M. Kosec, Influence of zirconia addition on the microstructure of K0.5Na0.5NbO3 ceramics. J. Eur. Ceram. Soc. 28, 1191–1196 (2008)

    Article  CAS  Google Scholar 

  26. R. Herbiet, U. Robels, H. Dederichs, G. Arlt, Domain wall and volume contributions to material properties of PZT ceramics. Ferroelectrics. 98, 107–121 (1989)

    Article  CAS  Google Scholar 

  27. A. Clive. K. Randall, J.P. Namchul, W. Kucera, T.R. Cao, Shrout, intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81, 677–688 (1998)

    Google Scholar 

  28. J.H. Gao, L.X. Zhang, D.Z. Xue, T. Kimoto, M.H. Song, L.S. Zhong, X.B. Ren, Symmetry determination on Pb-free piezoceramic 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 using convergent beam electron diffraction method. J. Appl. Phys. 115, 054108 (2014)

    Article  Google Scholar 

  29. D.S. Keeble, E.R. Barney, D.A. Keen, M.G. Tucker, J. Kreisel, P.A. Thomas, Bifurcated polarization rotation in bismuth-based piezoelectrics. Adv. Funct. Mater. 23, 185–190 (2013)

    Article  CAS  Google Scholar 

  30. W.H. Ma, A. Hao, Electric field-induced polarization rotation and ultrahigh piezoelectricity in PbTiO3. J. Appl. Phys. 115, 104105 (2014)

    Article  Google Scholar 

  31. Y.C. Zhang, J. Glaum, C. Groh, M.C. Ehmke, J.E. Blendell, K.J. Bowman, M.J. Hoffman, Correlation between piezoelectric properties and phase coexistence in (Ba,Ca)(Ti,Zr)O3 ceramics. J. Am. Ceram. Soc. 97, 2885–2891 (2014)

    Article  CAS  Google Scholar 

  32. J. Li, F. Li, S.J. Zhang, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc. 97, 1–27 (2014)

    Article  CAS  Google Scholar 

  33. H.T. Li, Q. Cao, F. Wang, M.H. Zhang, Q. Yu, R.Y. Dong, Sinterability, crystal structure and piezoelectric properties of lead-free [Li0.06(Na0.52K0.48)0.94+x]NbO3 piezoelectric ceramics. J. Alloys Compd. 634, 163–167 (2015)

    Article  CAS  Google Scholar 

  34. F. Rubio-Marcos, R. López-Juárez, R.E. Rojas-Hernandez, A.D. Campo, N. Razo-Pérez, J.F. Fernandez, Revealing the role of the rhombohedral-tetragonal phase coexistence in enhancement of the piezoelectric properties. ACS Appl. Mater. Interfaces 7, 23080–23088 (2015)

    Article  CAS  Google Scholar 

  35. G. Viola, T. Saunders, X. Wei, K.B. Chong, H. Luo, M.J. Reece, H. Yan, Contribution of piezoelectric effect, electrostriction and ferroelectric/ferroelastic switching to strain–electric field response of dielectrics. J. Adv. Dielectr. 3, 1350007–1350011 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the support of the National Science Foundation of China (NSFC No. 51722208, 51332003, and 51702028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiagang Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Wu, B. & Wu, J. Phase structure, electrical properties, and component stability in (1 − x)K0.40Na0.60Nb0.96Sb0.04O3x(Bi0.92Nd0.08)0.5Na0.5ZrO3 lead-free ceramics. J Mater Sci: Mater Electron 29, 17209–17216 (2018). https://doi.org/10.1007/s10854-018-9813-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9813-6

Navigation