Structural, optical, magnetic and dielectric properties of Dy-doped SrTiO3 nano ceramics

  • E. Padmini
  • K. RamachandranEmail author
  • M. Muralidharan


In the present work, pure and various concentration of dysprosium (0, 1, 3, 5%) doped SrTiO3 ceramics were synthesized by solid state reaction. The structural examination based on X-ray diffraction reveal the cubic perovskite of strontium titanate ceramics. Raman spectra justifies the formation of cubic perovskite structure and the presence of local disorder in the ceramics. Irregular morphology with ploy dispersed nature of the prepared ceramics were determined by scanning electron microscopy. Optical absorption studies demonstrate the intriguing visible range absorption and multi-color emission. Further, the band gap values are deliberated using UV and PL shows violet, green and blue emission at an excitation of 330 nm. At room temperature strontium titanate is diamagnetic, on addition of Dy in SrTiO3 lattice exhibits anti-ferromagnetic signature. As the doping level increases due to Dy–Dy interaction anti-ferromagnetic signature is increased. The dielectric constant ε′ value is very low, as the content of Dy increases in Sr–Ti–O lattice the constant value augmented and space charge polarization is present.



The authors tremendously acknowledge the Nanotechnology Research Center (NRC), SRM Institute of Science and Technology, Kattankulathur and Pondicherry University (CIF) for their instant support during characterization of the samples.


  1. 1.
    L. Zhang, W.L. Zhong, G. Wamg, Solid State Commun. 10, 761 (1998)Google Scholar
  2. 2.
    S. Zafar, P. Chu, T. Remmel, R.E. Jones, B. White, D. Gentile, B. Jiang, B. Melnick, D. Taylor, P. Zucher, S. Gillespie, Mater. Res. Soc. Symp. Proc. 43, 15 (1998)Google Scholar
  3. 3.
    T.-S. Yun, J.-C. Lee, H.-S. Kim, H.-G. Kim, I.-D. Kim, IEEE Trans. Ultrason. Ferroelect. FrEq. Control. 53, 518–523 (2006)CrossRefGoogle Scholar
  4. 4.
    J. Nath, M.B. Steer, D. Ghosh, J.-P. Maria, A. Kingon, G.T. Stauf, Conf. Proc. Eur. Microwave Conf. 3, 1497–1500 (2004)Google Scholar
  5. 5.
    H. Ryu, B.K. Singh, K.S. Bartwal, M.G. Brik, I.V. Kityk, Acta Mater. 56, 358–363 (2008)CrossRefGoogle Scholar
  6. 6.
    Z. Jia, K. Lin, G. Wu, H. Xing, H. Wu, Nano 13, 1830005 (2018)CrossRefGoogle Scholar
  7. 7.
    Y.J. Wang, X.J. Wu, C.G. Feng, Q.X. Zeng, Microelectron. Eng 154, 17 (2016)CrossRefGoogle Scholar
  8. 8.
    G. Wu, Y. Cheng, Z. Wang, K. Wang, A. Feng, J. Mater. Sci. 28, 576–581 (2017)Google Scholar
  9. 9.
    G. Wu, J. Li, K. Wang, Y. Wang, C. Pan, A. Feng, J. Mater. Sci. 28, 6544–6551 (2017)Google Scholar
  10. 10.
    G. Wu, Y. Wang, K. Wang, A. Feng, RSC Adv. 6, 102542–102548 (2016)CrossRefGoogle Scholar
  11. 11.
    H. Yanhong, L. Huibin, G. Haizhong, L. Lifeng, H. Meng, C. Zhenghao, Z. Yueliang, Z. Kun, J. Kuijuan, Y. Gouzen, Chin. Sci. Bull. 51, 2035–2037 (2006)CrossRefGoogle Scholar
  12. 12.
    Y. Zhang, J. Hu, E. Cao, L. Sun, H. Qin, J. Magn. Magn. Mater. 324, 1770–1775 (2012)CrossRefGoogle Scholar
  13. 13.
    B. Ullah, W. Lei, X.-H. Wang, G.F. Fan, X.-C. Wang, W.-Z. Lu, RSC Adv. 6, 91679–91688 (2016)CrossRefGoogle Scholar
  14. 14.
    A. Chen, Y. Zhi, J. Appl. Phys. 71, 6025 (1992)CrossRefGoogle Scholar
  15. 15.
    X.-J. Huang, X. Yan, H.-Y. Wu, Y. Fang, Y.-H. Min, W.-S. Li, S.-Y. Wang, Z.-J. Wu, Trans. Nonferr. Met. Soc. China 26, 464–471 (2016)CrossRefGoogle Scholar
  16. 16.
    M.J. Akhtar, Z.N. Akhtar, J.P. Dragun, C.R.A. Catlow, Solid State Ion. 104, 147–158 (1997)CrossRefGoogle Scholar
  17. 17.
    Y. Xin, C.-L. Zhao, Y.-L. Zhou, Z.-J. Wu, J.-M. Yuan, W.-S. Li, Trans. Nonferr. Met. Soc. China 25, 2272–2278 (2015)CrossRefGoogle Scholar
  18. 18.
    X. Lin, C.W. Rischau, C.J. van der Beek, B. Fauqué, K. Behnia, Phys. Rev. B 92, 174504 (2015)CrossRefGoogle Scholar
  19. 19.
    P. Moetakef, T.A. Cain, Thin Solid Films 583, 129 (2015)CrossRefGoogle Scholar
  20. 20.
    T. Okuda, K. Nakanishi, S. Miyasaka, Y. Tokura, Phys. Rev. B, 63, 113104-1–113104-4 (2001)CrossRefGoogle Scholar
  21. 21.
    S. Ohta, T. Nomura, H. Ohta, K. Koumoto, J. Appl. Phys. 97, 034106-–034106-4 (2005)CrossRefGoogle Scholar
  22. 22.
    W. Wunderlich, H. Ohta, K. Koumoto, Phys. B 404, 2202–2212 (2009)CrossRefGoogle Scholar
  23. 23.
    K.H. Lee, S.W. Kim, H. Ohta, K. Koumoto, J. Appl. Phys. 100(1), 063717-1–063717-7 (2006)Google Scholar
  24. 24.
    J. Guravamma, B.H. Rudramadevi, IARJSET, 4, (2017)Google Scholar
  25. 25.
    L. Zhang, T. Tosho, N. Okinaka, T. Akiyama, Mater. Trans. 48, 2088–2093 (2007)CrossRefGoogle Scholar
  26. 26.
    Hu Qi-Guo, Z.-Y. Shen, Y.-M. Li, Z.-M. Wang, W.-Q. Luo, Z.-X. Xie, Ceram. Int. 07, 126 (2013)Google Scholar
  27. 27.
    Z.Y. Shen, Y.M. Li, Q.G. Hu, W.Q. Luo, Z.M. Wang, J. Electroceram. 34, 236–240 (2015)CrossRefGoogle Scholar
  28. 28.
    J. Liu, C.L. Wang, H. Peng, W.B. Su, H.C. Wang, J.C. Li, J.L. Zhang, L.M. Mei, J. Electron. Mater. 41, 11 (2012)CrossRefGoogle Scholar
  29. 29.
    Z. Wang, M. Gao, Z. Yao, G. Li, Z. Song, W. Hu, H. Hao, H. Liu, Z. Yu, Ceram. Int. 40, 929–933 (2014)CrossRefGoogle Scholar
  30. 30.
    Z. Shen, Y. Li, W. Luo, Z. Wang, X. Gu, R. Liao, J. Mater. Sci. 24, 704–710 (2013)Google Scholar
  31. 31.
    A. Kumar, P. Suresh, M. Kumar, H. Srikanth, M. Post, K. Sahner, R. Moos, S. Srinath, J. Phys. 200, 092010 (2010)Google Scholar
  32. 32.
    S.K. Rout, S. Panigrahi, J. Bera, Bull. Mater. Sci. 28, 275–279 (2005)CrossRefGoogle Scholar
  33. 33.
    C. Decorse-Pascant, J. Berthon, L. Pinsard-Gaudart, N. Dragoe, P. Berthet, J. Magn. Magn. Mater. 321, 3526–3531 (2009)CrossRefGoogle Scholar
  34. 34.
    R. Niishiro, S. Tanaka, A. Kudo, Appl. Catal. B 150–151, 187–196 (2014)CrossRefGoogle Scholar
  35. 35.
    Z. Zheng, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Colloid Interface Sci. 358, 68–72 (2011)CrossRefGoogle Scholar
  36. 36.
    D.D. Kajale, G.E. Patil, V.B. Gaikwad, S.D. Shinde, D.N. Chavan, N.K. Pawar, S.R. Shisath, G.H. Jain, Int. J. Smart Sens. Intell. Syst. 5, 382–400 (2012)Google Scholar
  37. 37.
    T. Tsumura, K. Matsuoka, M. Toyoda, Formation and annealing of BaTiO3 and SrTiO3 nanoparticles in KOH solution. J. Mater. Sci. Technol. 26, 33–38 (2010)CrossRefGoogle Scholar
  38. 38.
    Y.M. Rangel-Hernandez, J.C. Rendon-Angeles, Z. Matamoros-Veloza, K. Yanagisawa, M.I. Pech-Canul, S. Diaz-de la Torre, Chem. Eng. J. 155, 483–492 (2009)CrossRefGoogle Scholar
  39. 39.
    C. Derek, A.L. Johnson, Prito, J. Power Sources 196, 7736 (2011)CrossRefGoogle Scholar
  40. 40.
    M. Muralidharan, V. Anbarasu, A. ElayaPerumal, K. Sivakumar, J. Mater. Sci. 26, 6352–6365 (2015)Google Scholar
  41. 41.
    L. Li, M. Wang, D. Guo, R. Fu, Q. Meng, J. Electroceram. 30, 129–132 (2013)CrossRefGoogle Scholar
  42. 42.
    K.S. Aneesh Kumar, R.N. Bhowmik, Mater. Chem. Phys. 146, 159–169 (2014)CrossRefGoogle Scholar
  43. 43.
    H. Muta, K. Kurosaki, S. Yamanaka, J. Alloys Compd. 350, 292–295 (2005)CrossRefGoogle Scholar
  44. 44.
    D. Yaoa, X. Zhoub, S. Gec, Appl. Surf. Sci. 257, 9233–9236 (2011)CrossRefGoogle Scholar
  45. 45.
    T. Xian, H. Yang, L. Di, J. Ma, H. Zhang, J. Dai, Nanoscale Res. Lett. 9, 327 (2014)CrossRefGoogle Scholar
  46. 46.
    B. Naufal, P. Periyat, J. Chem. Pharm. Sci. (2016)Google Scholar
  47. 47.
    V.V. Lemanov, Phys. Solid State 39, 1468–1473 (1997)CrossRefGoogle Scholar
  48. 48.
    A.E. Souza, G.T.A. Santos, B.C. Barra, W.D. Macedo Jr., S.R. Teixeira, C.M. Santos, A.M.O.R. Senos, L. Amaral, E. Longo, Cryst. Growth Des. 12, 5671–5679 (2012)CrossRefGoogle Scholar
  49. 49.
    Q. Wu, J. Cen, K.R. Goodman, M.G. White, G. Ramakrishnan, A. Orlov, ChemSusChem. 14, 1889–1897 (2016)CrossRefGoogle Scholar
  50. 50.
    W. Bian, X. Lu, Y. Li, C. Min, H. Zhu, Z. Fu, Q. Zhang, J. Mater. Sci. 29, 2743–2747 (2018)Google Scholar
  51. 51.
    Y. Xu, Y. Wei, J. Huang, J. Wang, X. Zheng, Z. Sun, Y. Wu, X. Tao, J. Wu, Mater. Res. Bull. 70, 114–121 (2015)CrossRefGoogle Scholar
  52. 52.
    M. Cardona, Phys. Rev. 140, A651–A655 (1965)CrossRefGoogle Scholar
  53. 53.
    M. Ganguly, S.K. Rout, T.P. Sinha, S.K. Sharma, H.Y. Park, C.W. Ahn, I.W. Kim, J. Alloy. Compd. 579, 473–484 (2013)CrossRefGoogle Scholar
  54. 54.
    Y.T. Zheng, Z.L. Zhang, Y.L. Mao, J. Alloys Compd. 554, 204–207 (2013)CrossRefGoogle Scholar
  55. 55.
    S.K.S. Patel, S. Kurian, N.S. Gajbhiye, AIP Adv. 2, 012107 (2012)CrossRefGoogle Scholar
  56. 56.
    D.L. Monikaa, H. Nagabhushanaa, R. Hari Krishnab, B.M. Nagabhushanab, S.C. Sharmac, T. Thomasd, RSC Adv. 4, 38655–38662 (2014)CrossRefGoogle Scholar
  57. 57.
    K.M. Choi, H.S. Kil, Y.S. Lee, D.Y. Lim, S.B. Cho, B.W. Lee, J.Lumin. 131, 894–899 (2011)CrossRefGoogle Scholar
  58. 58.
    H. Trabelsi, M. Bejar, E. Dhahri, M. Sajieddine, M.A. Valente, A. Zaoui, J. Alloys Compd. 680, 560–564 (2016)CrossRefGoogle Scholar
  59. 59.
    V. Dyakonov, A. Szytuła, S. Baran, Z. Kravchenko, E. Zubov, O. Iessenchuk, W. Bazela, M. Dul, A. Zarzyckiand, H. Szymczak, ActaPhysicaPolonica A. 22, 319–327 (2016)Google Scholar
  60. 60.
    C. Gang Duan, R.F. Sabirianov, W. Ning Mei, S.S. Jaswal, E.Y. Tsymbal, Nanoletters 6, 483–487 (2006)CrossRefGoogle Scholar
  61. 61.
    M. Ishaque et al., J. Magn. Magn. Mater. 372, 68–73 (2014)CrossRefGoogle Scholar
  62. 62.
    M.K. Abbas, M.A. Khan, F. Mushtaq, M.F. Warsi, M. Sher, I. Shakir, M.F. Aboud, Ceram. Int. 43, 5524–5533 (2017)CrossRefGoogle Scholar
  63. 63.
    V. Ratchagar, K. Jagannathan, J. Alloys Compd. 689, 1088–1095 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsSRM Institute of Science and TechnologyChennaiIndia
  2. 2.Department of Nuclear PhysicsUniversity of MadrasChennaiIndia

Personalised recommendations