Highly reproducible perovskite solar cells via controlling the morphologies of the perovskite thin films by the solution-processed two-step method

Abstract

Organic–inorganic halide perovskites are one of the most attractive materials for the next generation solar cells. The PCE has rapidly increased to more than 22% using different configurations and techniques and further developments are predicted. However, perovskite solar cells suffer from fabrication reproducibility mainly due to difficulty in controlling the morphology of the perovskite films themselves. In this paper we present a low temperature solution-processed two-step deposition method to fabricate CH3NH3PbI3 perovskites. This method offers a simple route with great potential in fabricating reproducible perovskite solar cells. In the present work, we demonstrate that the morphology of the perovskite thin films is highly determined by the concentration of Methylammonium iodide (MAI) as well as the reaction time between MAI and PbI2. High-performance solar cells have been reproducibly achieved with a highest PCE of 15.01% for PCBM-based planar heterojunction solar cells.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Y. Hou, H. Zhang, W. Chen, S. Chen, C.O.R. Quiroz, H. Azimi, A. Osvet, G.J. Matt, E. Zeira, J. Seuring, N.K. Busies, W. Lövenich, C.J. Brabec, Inverted, environmentally stable perovskite solar cell with a novel low-cost and water-free PEDOT hole-extraction layer. Adv. Energy Mater. 5, 1500543 (2015)

    Article  Google Scholar 

  2. 2.

    C. Bi, Y. Shao, Y. Yuan, Z. Xiao, C. Wang, Y. Gao, J. Huang, Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing. J. Mater. Chem. A 2, 18508–18514 (2014)

    CAS  Article  Google Scholar 

  3. 3.

    K.G. Lim, H.B. Kim, J. Jeong, H. Kim, J.Y. Kim, T.W. Lee, Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function. Adv. Mater. 26, 6461–6466 (2014)

    CAS  Article  Google Scholar 

  4. 4.

    H. Zhang, H. Azimi, Y. Hou, T. Ameri, T. Przybilla, E. Spiecker, M. Kraft, U. Scherf, C.J. Brabec, Improved high-efficiency perovskite planar heterojunction solar cells via incorporation of a polyelectrolyte interlayer. Chem. Mater. 26, 5190–5193 (2014)

    CAS  Article  Google Scholar 

  5. 5.

    G. Xing, N. Mathews, S. Sun, S. Lim, Y. Lam, M. Grätzel, S. Mhaisalkar, Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013)

    CAS  Article  Google Scholar 

  6. 6.

    S.A. Kulkarni, T. Baikie, P.P. Boix, N. Yantara, N. Mathews, S.G. Mhaisalkar, Band-gap tuning of lead halide perovskites using a sequential deposition process. J. Mater. Chem. A. 2, 9221–9225 (2014)

    CAS  Article  Google Scholar 

  7. 7.

    J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013)

    CAS  Article  Google Scholar 

  8. 8.

    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    CAS  Article  Google Scholar 

  9. 9.

    M. Tavakoli, D. Bi, L. Pan, A. Hagfeldt, S. Zakeeruddin, M. Grätzel, Adamantanes enhance the photovoltaic performance and operational stability of perovskite solar cells by effective mitigation of interfacial defect states. Adv. Energy Mater. https://doi.org/10.1002/aenm.201800275 (2018)

    Article  Google Scholar 

  10. 10.

    S. Karuppuchamy, G. Murugadoss, K. Ramachandran, V. Saxena, R. Thangamuthu, Inorganic based hole transport materials for perovskite solar cells. J. Mater. Sci. Mater. Electron. 29(10), 8847–8853 (2018)

    CAS  Article  Google Scholar 

  11. 11.

    K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, H.J. Snaith, Sub-150 C processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy Environ. Sci. 7, 1142–1147 (2014)

    CAS  Article  Google Scholar 

  12. 12.

    J.T. Wang, J.M. Ball, E.M. Barea, A. Abate, J.A.A. Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H.J. Snaith, R.J. Nicholas, Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 14, 724–730 (2013)

    Article  Google Scholar 

  13. 13.

    P. Qin, A.L. Domanski, A.K. Chandiran, R. Berger, H.J.u. Butt, M.I. Dar, T. Moehl, N. Tetreault, P. Gao, S. Ahmad, M.K. Nazeeruddin, M. Gratzel, Yttrium-substituted nanocrystalline TiO2 photoanodes for perovskite based heterojunction solar cells. Nanoscale 6, 1508–1514 (2014)

    CAS  Article  Google Scholar 

  14. 14.

    J.W. Lee, S.H. Lee, H.S. Ko, J. Kwon, J.H. Park, S.M. Kang, N. Ahn, M. Choi, J.K. Kim, N.G. Park, Opto-electronic properties of TiO2 nanohelices with embedded HC (NH2)2 PbI3 perovskite solar cells. J. Mater. Chem. A 3, 9179–9186 (2015)

    CAS  Article  Google Scholar 

  15. 15.

    N.G. Park, Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 4, 2423–2429 (2013)

    CAS  Article  Google Scholar 

  16. 16.

    J.H. Kim, C.C. Chueh, S.T. Williams, A.K.Y. Jen, Room-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells. Nanoscale 7, 17343–17349 (2015)

    CAS  Article  Google Scholar 

  17. 17.

    S. Ryu, J. Seo, S.S. Shin, Y.C. Kim, N.J. Jeon, J.H. Noha, S.I. Seok, Fabrication of metal-oxide-free CH3NH3PbI3 perovskite solar cells processed at low temperature. J. Mater. Chem. A 3, 3271–3275 (2015)

    CAS  Article  Google Scholar 

  18. 18.

    C.H. Chiang, Z.L. Tseng, C.G. Wu, Planar heterojunction perovskite/PC 71 BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process. J. Mater. Chem. A 2, 15897–15903 (2014)

    CAS  Article  Google Scholar 

  19. 19.

    J. Duan, Q. Xiong, H. Wang, J. Zhang, J. Hu, ZnO nanostructures for efficient perovskite solar cells. J. Mater. Sci. 28, 60 (2017)

    CAS  Google Scholar 

  20. 20.

    J. Seo, S. Park, Y.C. Kim, N.J. Jeon, J.H. Noh, S.C. Yoon, S.I. Seok, Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy Environ. Sci. 7, 2642–2646 (2014)

    CAS  Article  Google Scholar 

  21. 21.

    L. Zheng, D. Zhang, Y. Ma, Z. Lu, Z. Chen, S. Wang, L. Xiao, Q. Gong, Morphology control of the perovskite films for efficient solar cells. Dalt Trans. 44, 10582–10593 (2015)

    CAS  Article  Google Scholar 

  22. 22.

    S. Shi, Y. Li, X. Li, H. Wang, Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites. Mater Horizons 2, 378–405 (2015)

    CAS  Article  Google Scholar 

  23. 23.

    Q. Chen, H. Zhou, Z. Hong, S. Luo, H.S. Duan, H.H. Wang, Y. Liu, G. Li, Y. Yang, Planar heterojunction perovskite solar cells via vapor assisted solution process. J. Am. Chem. Soc. 136, 622–625 (2013)

    Article  Google Scholar 

  24. 24.

    M. Jiang, J. Wu, F. Lan, Q. Tao, D. Gao, G. Li, Enhancing the performance of planar organo-lead halide perovskite solar cells by using a mixed halide source. J. Mater. Chem. A 3, 963–967 (2015)

    CAS  Article  Google Scholar 

  25. 25.

    F. Hao, C.C. Stoumpos, Z. Liu, R.P. Chang, M.G. Kanatzidis, Controllable perovskite crystallization at a gas–solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. J. Am. Chem. Soc. 136, 16411–16419 (2014)

    CAS  Article  Google Scholar 

  26. 26.

    Y. Zhao, K. Zhu, Solution chemistry engineering toward high-efficiency perovskite solar cells. J. Phys. Chem. Lett. 5, 4175–4186 (2014)

    CAS  Article  Google Scholar 

  27. 27.

    D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015)

    CAS  Article  Google Scholar 

  28. 28.

    H. Huang, J. Shi, L. Zhu, D. Li, Y. Luo, Q. Meng, Two-step ultrasonic spray deposition of CH3NH3PbI3 for efficient and large-area perovskite solar cell. Nano Energy 27, 352–358 (2016)

    CAS  Article  Google Scholar 

  29. 29.

    H.L. Hsu, C.P. Chen, J.Y. Chang, Y.Y. Yu, Y.K. Shen, Two-step thermal annealing improves the morphology of spin-coated films for highly efficient perovskite hybrid photovoltaics. Nanoscale. 6, 10281–10288 (2014)

    CAS  Article  Google Scholar 

  30. 30.

    Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv Mater. 26, 6503–6509 (2014)

    CAS  Article  Google Scholar 

  31. 31.

    Y. Chen, T. Chen, L. Dai, Layer-by-layer growth of CH3NH3PbI3−xClx for highly efficient planar heterojunction perovskite solar cells. Adv Mater. 27, 1053–1059 (2015)

    CAS  Article  Google Scholar 

  32. 32.

    J. Qiu, Y. Qiu, K. Yan. M. Zhong, C. Mu, H. Yan, S. Yang, All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO 2 nanowire arrays. Nanoscale 5, 3245 (2013)

    CAS  Article  Google Scholar 

  33. 33.

    H.J. Snaith, A. Abate, J.M. Ball, G.E. Eperon, T. Leijtens, N.K. Noel, S.D. Stranks, J.T.W. Wang, K. Wojciechowski, W. Zhang, Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014)

    CAS  Article  Google Scholar 

  34. 34.

    G.E. Eperon, V.M. Burlakov, A. Goriely, H.J. Snaith. Neutral color semitransparent microstructured perovskite solar cells. ACS Nano 8, 591–598 (2014)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the facility support by Sheffield Hallam University technical staff and Becker Industrial Coating Ltd.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aseel Hassan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahaq, Y., Moussa, M., Mohammad, A. et al. Highly reproducible perovskite solar cells via controlling the morphologies of the perovskite thin films by the solution-processed two-step method. J Mater Sci: Mater Electron 29, 16426–16436 (2018). https://doi.org/10.1007/s10854-018-9734-4

Download citation