Skip to main content
Log in

Factors affecting the phase composition of 612 aluminates for Ba–W cathode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The precursor powder of 612 aluminates were synthesized by using liquid-phase co-precipitation method. The microstructure and formation mechanisms of the precursor powder were investigated through X-ray diffraction, thermal gravimetric, differential scanning calorimetry, and scanning electron microscope. The effects of the stacking states of the precursor powder, calcination temperature, and atmosphere on the phase compositions of 612 aluminates were also systematically studied. Results showed that the prepared precursor powder was a mixture of BaCO3, BaCa(CO3)2, and amorphous AlOOH, which with particle size ranging from 20 to 30 nm. The stacking states of the precursor powder considerably influenced the phase composition of aluminates. The pressed precursor tablet can ensure the final phase composition of aluminates was Ba3CaAl2O7. When the precursor powder was calcined in CO2 atmosphere at 1400 °C for 2 h, the phase composition included Ba5CaAl4O12, BaAl2O4, and BaCO3. When the calcination temperature was increased, the main crystalline phase of aluminates changed from Ba5CaAl4O12 to Ba3CaAl2O7 in flowing N2, Ar, and static air. The barium–tungsten cathode prepared by aluminates of Ba3CaAl2O7 phase showed better emissivity than that of Ba5CaAl4O12 phase. The current density of pulse emission at 1050 °C can reach 35.31 A/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. V.G. Vorozheikin, V.I. Kozlov, in IEEE International Vacuum Electron Sources Conference (2004), pp. 307–308

  2. X. Wang, Y. Zhang, Y. Ding, X. Du, S. Qi, Q. Zhao, Y. Li, Q. Zhang, M. Meng, X. Hu, Zhenkong Kexue Yu Jishu Xuebao/Journal Vac. Sci. Technol. 35, 468 (2015)

    CAS  Google Scholar 

  3. J.X. Bao, B.F. Wan, P.J. Wang, Vacuum 81, 1029 (2007)

    Article  CAS  Google Scholar 

  4. . C. Higashi, N.B. De Lima, J.R. Matos, C. Giovedi, in IEEE SBMO/IEEE MTT-S International Conference on Microwave and Optoelectronics (2005), pp. 222–225

  5. L. Schoenbeck, Georg. Inst. Technol. (2005)

  6. M. Shiran, M.J. Hadianfard, M.M. Shiezadeh, Int. J. Chem. Eng. Appl. 4, 88 (2013)

    CAS  Google Scholar 

  7. Q. Wang, W. Liu, L. Dong, X. Zhu, X. Liu, J.S. Wang, in IEEE Vacuum Electronics Conference (2015), pp. 1–2

  8. C. Higashi, N.B. De Lima, J.R. Matos, C. Giovedi, C.C. Motta, in SBMO/IEEE MTT-S International Conference on Microwave and Optoelectronics, IEEE (2005), pp. 345–348

  9. F.F. Sene, V.O. Santos, C.C. Motta, in IEEE Vacuum Electron Sources Conference (2012), pp. 165–166

  10. K. Dudley, Vacuum 11, 84 (1961)

    Article  CAS  Google Scholar 

  11. J.M. Roquais, F. Poret, R. Le Doze, J.L. Ricaud, A. Monterrin, A. Steinbrunn, Appl. Surf. Sci. 215, 5 (2003)

    Article  CAS  Google Scholar 

  12. I.P. Melnikova, V.G. Vorozheikin, D.A. Usanov, Appl. Surf. Sci. 215, 59 (2003)

    Article  CAS  Google Scholar 

  13. L.E. Branovich, D.W. Eckart, US 5298830 A. (1994)

  14. I. Brodie, R.O. Jenkins, Br. J. Appl. Phys. 8, 27 (1957)

    Article  CAS  Google Scholar 

  15. F.F. Sene, V.A. Mancini, V.O. Santos, C.C. Motta, in IEEE Vacuum Electronics Conference (2013), pp. 1–2

  16. F.F. Sene, A.G.L. Silva, C.C. Motta, in IEEE Vacuum Electron Sources Conference (2012), pp. 183–184

  17. R.A. Lipeles, H.K.A. Kan, Appl. Surf. Sci. 16, 189 (1983)

    Article  CAS  Google Scholar 

  18. E.S. Rittner, W.C. Rutledge, R.H. Ahlert, J. Appl. Phys. 28, 1468 (1957)

    Article  CAS  Google Scholar 

  19. K.F. Wang, L. Wei, J. Wang, Y. Cui, W. Xi, Rare Met. Mater. Eng. 42, 2326 (2013)

    CAS  Google Scholar 

  20. K.F. Wang, L. Wei, J.S. Wang, J. Inorg. Mater. 28, 1354 (2013)

    Article  CAS  Google Scholar 

  21. H. Tian, Y.W. Liu, Y. Han, H.X. Hong, J.X. Yang, Z.Y. Xu, M.F. Meng, H.L. Zhang, J. Vac. Sci. Technol. 29, 64 (2009)

    Google Scholar 

  22. X. Wang, X. Liao, J. Luo, Q. Zhao, Chin. J. Vac. Sci. Technol. 24, 67 (2004)

    Google Scholar 

  23. M.G. Ma, Y.J. Zhu, J.F. Zhu, Z.L. Xu, Mater. Lett. 61, 5133 (2007)

    Article  CAS  Google Scholar 

  24. C.A. Weiss, K.T. Cancel, R.D. Moser, P.G. Allison, E.R. Gore, M.Q. Chandler, P.G. Malone, J. Nanotechnol. Smart Mater. 105, 1 (2014)

    Google Scholar 

  25. H.S. Lee, H.H. Tai, K. Kim, Mater. Chem. Phys. 93, 376 (2005)

    Article  CAS  Google Scholar 

  26. H. Liu, Z.H. Shi, Y.Q. Chen, B. Zhao, M.C. Gong, Chin. J. Inorg. Chem. 20, 688 (2004)

    CAS  Google Scholar 

  27. H. Kumazawa, K. Oki, H.M. Cho, E. Sada, Chem. Eng. Commun. 115, 25 (2007)

    Article  Google Scholar 

  28. K.J. Mackenzie, J. Temuujin, M.E. Smith, P. Angerer, Y. Kameshima, Thermochim. Acta 359, 87 (2000)

    Article  CAS  Google Scholar 

  29. S.M. Antao, I. Hassan, Phys. Chem. Miner. 34, 573 (2007)

    Article  CAS  Google Scholar 

  30. I. Arvanitidis, D. Siche, S. Seetharaman, Metall. Mater. Trans. B 27, 409 (1996)

    Article  Google Scholar 

  31. Chemical Industry Press Division, Chemical and Chemical Dictionary, 1st edn. (Chemical Industry Press, Beijing, 2003), pp. 2238–2239

    Google Scholar 

  32. I. Galan, F.P. Glasser, C. Andrade, J. Therm. Anal. Calorim. 111, 1197 (2013)

    Article  CAS  Google Scholar 

  33. E.Q. Zhang, X.Q. Liu, J. Electron. Inf. Technol. 6, 89 (1984)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongbao Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Li, J., Feng, Y. et al. Factors affecting the phase composition of 612 aluminates for Ba–W cathode. J Mater Sci: Mater Electron 29, 16330–16337 (2018). https://doi.org/10.1007/s10854-018-9723-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9723-7

Navigation