Skip to main content
Log in

Enhancement of photoelectrochemical performance of CdSe sensitized seeded TiO2 films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we highlight the effect of TiO2 seed layer (SL) on the photoelectrochemical performances of CdSe/TiO2 photoanodes (PAs). TiO2 thin films were prepared by spin coating starting from a sol gel solution containing TiO2 nanopowder, then sensitized with electrodeposited CdSe nanoparticles. Structural, optical and photoelectrochemical properties of the CdSe/TiO2 PAs with and without the SL were investigated. Charge accumulation processes and charge transfer characteristics were identified by electrochemical impedance spectroscopy. The introduction of the compact TiO2 SL was found to significantly increase the electron transport. The photocurrent density produced by the CdSe/TiO2/SL PA reached 0.95 mA/cm2, about two times higher than that performed by the CdSe/TiO2 PAs. This enhancement might be attributed to a substantial decrease of the leakage current induced by a better crystallization of TiO2 thin films as well as a higher sensitizing effect of the CdSe nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

PEC:

Photoelectrochemical

SL:

Seed layer

PAs:

Photoanodes

FTO:

Fluorine-doped tin oxide

ITO:

Indium-doped tin oxide

XRD:

X-ray diffraction

SEM:

Scanning electron microscope

LSV:

Linear sweep voltammogram

Jsc:

Short-circuit current density

J–V:

Photocurrent density–voltage

VOC:

Open circuit voltage

FF:

Fill factor

η:

Energy conversion efficiency

J–t:

Photocurrent–time

EIS:

Electrochemical impedance spectroscopy

References

  1. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  CAS  Google Scholar 

  2. G.S. Han, S. Lee, J.H. Noh, H.S. Chung, J.H. Park, B.S. Swain, J.H. Im, N.G. Park, H.S. Jung, 3-D TiO2 nanoparticle/ITO nanowire nanocomposite antenna for efficient charge collection in solid state dye-sensitized solar cells. Nanoscale 6, 6127–6132 (2014)

    Article  CAS  Google Scholar 

  3. X. Li, T. Xia, C. Xu, J. Murowchick, X. Chen, Catal. Today 225, 64–73 (2014)

    Article  CAS  Google Scholar 

  4. M.Z. Ge, C.Y. Cao, S.H. Li, S.N. Zhang, S. Deng, J.Y. Huang, Q.S. Li, K.Q. Zhang, S.S. Al-Deyab, Y.K. Lai, Enhanced photocatalytic performances of n-TiO2 nanotubes by uniform creation of p-n heterojunctions with p-Bi2O3 quantum dots. Nanoscale 7, 11552–11560 (2015)

    Article  CAS  Google Scholar 

  5. S. Shokhovets, O. Ambacher, G. Gobsch, Conduction-band dispersion relation and electron effective mass in III-V and II-VI zinc-blende semiconductors. Phys. Rev. 76, 125203 (2007)

    Article  Google Scholar 

  6. J. Lv, L. Su, H. Wang, L. Liu, G. Xu, D. Wang, Z. Zheng, Y. Wu, Enhanced visible light photocatalytic activity of TiO2 nanotube arrays modified with CdSe nanoparticles by electrodeposition method. Surf. Coat. Technol. 242, 20–28 (2014)

    Article  CAS  Google Scholar 

  7. A.K. Ayal, Z. Zainal, H.-N. Lim, Z.A. Talib, Y.-C. Lim, S.-K. Chang, N. Asma, S. Araa, M. Holi, W.N.M. Amin, Electrochemical deposition of CdSe-sensitized TiO2 nanotube arrays with enhanced photoelectrochemical performance for solar cell application. Mater. Sci.: Mater. Electron. 27, 5204–5210 (2016)

    CAS  Google Scholar 

  8. B. Sun, T. Shi, X. Tan, Z. Liu, Y. Wu, G. Liao, Iridium oxide modified CdSe/CdS/TiO2 nanorods for efficient and stable photoelectrochemical water splitting. Mater. Today 3, 443–448 (2016)

    Article  Google Scholar 

  9. M. Yoshii, Y. Murata, Y. Nakabayashi, T. Ikeda, M. Fujishima, H. Tada, Coverage control of CdSe quantum dots in the photodeposition on TiO2 for the photoelectrochemical solar hydrogen generation. Colloid Interface Sci. 474, 34–40 (2016)

    Article  CAS  Google Scholar 

  10. T.H. Thanh, Q.V. Lam, T.H. Nguyen, T.D. Huynh, Characteristic optics of CdSe QDs, TiO2/CdSe, TiO2/MPA/CdSe films and application in solar cells. In Journal of Engineering Technology and Education (GTSD2012), Ho Chi Minh City, 2012

  11. B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–739 (1991)

    Article  Google Scholar 

  12. J. Wang, T. Zhang, D. Wang, R. Pan, Q. Wang, H. Xia, Improved morphology and photovoltaic performance in TiO2 nanorod arrays based dye sensitized solar cells by using a seed layer. J. Alloys Compd. 551, 82–87 (2013)

    Article  CAS  Google Scholar 

  13. D. Jyoti, D. Mohan, Growth and performance of TiO2 nanotubes on anatase blocking layer in dye-sensitized solar cells. Prog. Nanotechnol. Nanomater. 3, 57–63 (2014)

    Google Scholar 

  14. L. Kavan, N. Tétreault, T. Moehl, M. GraÌ´tzel, Electrochemical characterization of TiO2 blocking layers for dye-sensitized solar cells. J. Phys. Chem. C 118, 16408–16418 (2014)

    Article  CAS  Google Scholar 

  15. R. Sivakumar, J. Ramkumar, S. Shaji, M. Paulraj, Efficient TiO2 blocking layer for TiO2 nanorod arrays based dye sensitized solar cells. Thin Solid Films 720, 012036 (2016)

    Google Scholar 

  16. J. Ben Naceur, M. Gaidi, F. Bousbih, R. Mechiakh, R. Chtourou, Annealing effects on microstructural and optical properties of Nanostructured-TiO2 thin films prepared by solgel technique. Curr. Appl. Phys. 12, 422–428 (2012)

    Article  Google Scholar 

  17. A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939)

    Article  CAS  Google Scholar 

  18. A. Lamouchi, B. Slimi, I. Ben Assaker, M. Gannouni, R. Chtourou, Correlation between SSM substrate effect and physical properties of ZnO nanowires electrodeposited with or without seed layer for enhanced photoelectrochemical applications. Eur. Phys. J. Plus 131, 201 (2016)

    Article  Google Scholar 

  19. P. Wang, D. Li, J. Chen, X. Zhang, J. Xian, X. Yang, X. Zheng, X. Li, Y. Shao, A novel and green method to synthesize CdSe quantum dots-modified TiO2 and its enhanced visible light photocatalytic activity. Appl. Catal. B 160–161, 217–226 (2014)

    Article  Google Scholar 

  20. W.J. Tseng, S.-M. Kao, Effect of seed particles on crystallization and crystallite size of anatase TiO2 nanocrystals by solvothermal treatment. Adv. Powder Technol. 26, 1225–1229 (2015)

    Article  CAS  Google Scholar 

  21. Y. Chen, D.D. Dionysiou, Effect of calcination temperature on the photocatalytic activity and adhesion of TiO2 films prepared by the P-25 powder-modified sol–gel method. J. Mol. Catal A 244, 73–82 (2006)

    Article  CAS  Google Scholar 

  22. L.-C. Pop, L. Sygellou, V. Dracopoulos, K.-S. Andrikopoulos, S. Sfaelou, P. Lianos, One-step electrodeposition of CdSe on nanoparticulate titania films and their use as sensitized photoanodes for photoelectrochemical hydrogen production. Catal. Today 252, 157–161 (2014)

    Article  Google Scholar 

  23. I.S. Cho, Z.B. Chen, A.J. Forman, D.R. Kim, P.M. Rao, T.F. Jaramillo, X.L. Zheng, Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 11, 4978–4984 (2011)

    Article  CAS  Google Scholar 

  24. H. Zhang, G. Chen, D.W. Bahnemann, Photoelectrocatalytic materials for environmental applications. J. Mater. Chem. 19, 5089–5121 (2009)

    Article  CAS  Google Scholar 

  25. C.-S. Lim, M.-L. Chen, W.-C. Oh, Synthesis of CdSe-TiO2 photocatalyst and their enhanced photocatalytic activities under UV and visible light. Bull. Korean Chem. Soc. 32, 1657 (2011)

    Article  CAS  Google Scholar 

  26. J. Wang, T. Zhang, D. Wang, R. Pan, Q. Wang, H. Xi, Improved morphology and photovoltaic performance in TiO2 nanorod arrays based dye sensitized solar cells by using a seed layer. J. Alloys Compd. 551, 82–87 (2013)

    Article  CAS  Google Scholar 

  27. X. Zhang, H. Sun, X. Tao, X. Zhou, TiO2@CdSe/CdS core–shell hollow nanospheres solar paint. RSC Adv. 4, 31313 (2014)

    Article  CAS  Google Scholar 

  28. T. Guang-Lei, H. Hong-Bo, S. Jian-Da, Effect of microstructure of TiO2 thin films on optical band gap energy. Chin. Phys. Lett. 22, 1787 (2005)

    Article  Google Scholar 

  29. Y.K.K. Supriyono, J. Gunlazuardi, Band gap energy modification of TiO2 photoelectrode by PbS/CdS quantum dot to enhance visible region photocurrent. Int. J. ChemTech Res. 9, 191–198 (2016)

    Google Scholar 

  30. W. Chakhari, J. Ben Naceur, S. Ben Taieb, I. Ben Assaker, R. Chtourou, Fe doped TiO2 nanorods with enhanced electrochemical properties as efficient photoanode materials. J. Alloys Compd. 708, 862–870 (2017)

    Article  CAS  Google Scholar 

  31. S.W. Shin, J.Y. Lee, K.-S. Ahn, S.H. Kang, J.H. Kim, Visible light absorbing tio2 nanotube arrays by sulfur treatment for photoelectrochemical water splitting. J. Phys. Chem. 119, 13375–13383 (2015)

    CAS  Google Scholar 

  32. S. Ito, P. Liska, P. Comte, R. Charvet, P. Pe´chy, U. Bach, L. Schmidt-Mende, S.M. Zakeeruddin, A. Kay, M.K. Nazeeruddin, M. Gra¨tzel, Control of dark current in photoelectrochemical (TiO2/I–I3 ) and dye-sensitized solar cells. Chem. Commun. 34, 4351–4353 (2005)

    Article  Google Scholar 

  33. W. Wang, F.; Li, D. Zhang, D.Y.C. Leung, G. Li, Photoelectrocatalytic hydrogen generation and simultaneous degradation of organic pollutant via CdSe/TiO2 nanotube arrays. Appl. Surf. Sci. 362, 490–497 (2016)

    Article  CAS  Google Scholar 

  34. M. Yoshii, Y. Murata, Y. Nakabayashi, T. Ikeda, M. Fujishima, H. Tada, Coverage control of CdSe quantum dots in the photodeposition on TiO2 for the photoelectrochemical solar hydrogen generation. J. Colloid Interface Sc. 474, 34–40 (2016)

    Article  CAS  Google Scholar 

  35. H. Wang, G. Wang, Y. Ling, M. Lepert, C. Wang, J.Z. Zhang, Y. Li, Photoelectrochemical study of oxygen deficient TiO2 nanowire arrays with CdS quantum dot sensitization. Nanoscale 4, 1463 (2012)

    Article  CAS  Google Scholar 

  36. B. Parkinson, on the efficiency and stability of photoelectrochemical devices. Acc. Chem. Res. 17, 431–437 (1984)

    Article  CAS  Google Scholar 

  37. A. Ye, W. Fan, Q. Zhang, W. Deng, Y. Wang, CdS–graphene and CdS–CNT nanocomposites as visible-light photocatalysts for hydrogen evolution and organic dye degradation. Catal. Sci. Technol. 2, 969–978 (2012)

    Article  CAS  Google Scholar 

  38. M. Jung, M. Kang, Enhanced photo-conversion efficiency of CdSe–ZnS core–shell quantum dots with Au nanoparticles on TiO2 electrodes. J. Mater. Chem. 21, 2694–2700 (2011)

    Article  CAS  Google Scholar 

  39. A. Cerda´n-Pasara, D. Esparza, I. Zarazu, M. Rese´ndiz, T. Lo´pez-Luke, E. De la Rosa, R. Fuentes-Ramı´rez, A. Alatorre-Ordaz, A. Martı´nez-Benı´tez, Photovoltaic study of quantum dot-sensitized TiO2/CdS/ZnS solar cell with P3HT or P3OT added. J. Appl. Electrochem. 46, 975–985 (2016)

    Article  Google Scholar 

  40. T. Hoshikawa, M. Yamada, R. Kikuchi, K. Eguchi, J. Electrochem. Soc. 152, E68–E73 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Ministry of Higher Education and Scientific Research of Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Joudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joudi, F., Chakhari, W., Ouertani, R. et al. Enhancement of photoelectrochemical performance of CdSe sensitized seeded TiO2 films. J Mater Sci: Mater Electron 29, 16259–16269 (2018). https://doi.org/10.1007/s10854-018-9715-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9715-7

Navigation