Skip to main content
Log in

Effects of precursor pH on structural and optical properties of CdTe quantum dots by wet chemical route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

l-cysteine capped CdTe quantum dots (QDs) were synthesized in aqueous solution in open air. In order to improve the crystallinity of the CdTe QDs, synthesis conditions were optimized. Effects of different solution pH were investigated in order to determine the optimum pH for the growth of highly crystalline CdTe QDs. X-ray diffraction patterns (XRD) for all the as-prepared samples displayed a zinc blende crystal structure. The XRD peak intensities were found to increase to a certain pH level. This was accompanied by a general increase in the crystallite sizes (3.01–3.25 nm) of the CdTe QDs as the solution pH was gradually increased from 7 to 12.5. The calculated strain in the CdTe QDs was observed to decrease with an increase in the solution pH level. The morphological studies obtained from scanning electron microscope showed clear changes in the shape of CdTe QDs with various solution pH. The shape of the QDs changed from small spherical to large flower-like and needle-like structures for various solution pH. The optical spectroscopy studies revealed that the photoluminescence emissions were shifted to longer wavelength (545–593 nm) as the pH was increased from 7 to 12.5. The ultraviolet–visible analysis displayed a red shift in the absorption peaks with an increase in the pH levels. The optical band gaps obtained from the Tauc formula displayed an inverse relation with the solution pH which could be due to increase in the QDs’ sizes with increasing pH level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Liu, V.C.S. Reynoso, L.C. Barbosa, R.F.C. Rojas, H.L. Fragnito, C.L. Cesar, O.L. Alves, Trap elimination in CdTe quantum dots in glasses. J. Mater. Sci. Lett. 14(9), 635–639 (1995)

    Article  Google Scholar 

  2. A.P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996)

    Article  Google Scholar 

  3. M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998)

    Article  Google Scholar 

  4. W.C.W. Chan, S.M. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998)

    Article  Google Scholar 

  5. Y. Wang, Z.Y. Tang, S.S. Tan, N.A. Kotov, Biological assembly of nanocircuit prototypes from protein-modified CdTe nanowires. Nano Lett. 5, 243–248 (2005)

    Article  Google Scholar 

  6. J. Chen, J.L. Song, X.W. Sun, W.Q. Deng, C.Y. Jiang, W. Lei, J.H. Huang, R.S. Liu, An oleic acid-capped CdSe quantum dot sensitized solar cell. Appl. Phys. Lett. 94, 153115 (2009)

    Article  Google Scholar 

  7. M. Gao, C. Lesser, S. Kirstein, H. Mohwald, A.L. Rogach, H. Weller, Electroluminescence of different colours from polycation of CdTe nanocrystal self-assembled films. J. Appl. Phys. 87, 2297–2302 (2000)

    Article  Google Scholar 

  8. N.C. Greenham, X. Peng, A.P. Alivisatos, Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B 54, 17628–17637 (1996)

    Article  Google Scholar 

  9. J.N. Tiwari, N.T. Rajanish, S.K. Kwang, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 57(4), 724–803 (2012)

    Article  Google Scholar 

  10. M. El-Kemary, M. Zahran, S.A.M. Khalifa, H.R. El-Seedi, Spectral characterisation of the silver nanoparticles biosynthesised using Ambrosia maritima plant. Micro Nano Lett. 11(6), 311–314 (2016)

    Article  Google Scholar 

  11. T. Frecker, D. Bailey, X. Arzeta-Ferrer, J. McBride, S.J. Rosenthal, Quantum dots and their application in lighting, displays, and biology. ECS J. Solid State Sci. Technol. 5(1), R3019–R3031 (2016)

    Article  Google Scholar 

  12. L.E. Brus, Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984)

    Article  Google Scholar 

  13. C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993)

    Article  Google Scholar 

  14. M.M. Barroso, Quantum dots in cell biology. J. Histochem. Cytochem. 59(3), 237–251 (2011)

    Article  Google Scholar 

  15. H.L. Zhang, L.F. Yang, Y. Zhu, X.D. Yao, S.L. Zhang, B. Dai, Y.P. Zhu, Y.J. Shen, G.H. Shi, D.W. Ye, Serum miRNA-21: elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate 71(3), 326–331 (2011)

    Article  Google Scholar 

  16. G. Lemon, M.L. Lim, F. Ajalloueian, P. Macchiarini, The development of the bioartificial lung. Br. Med. Bull. 110, 1 (2014)

    Article  Google Scholar 

  17. C.S.S. Kumar, in Nanomaterials for Medical Applications, ed. by Kirk-Othmer, Encyclopedia of Chemical Technology (Wiley, Hoboken, 2007)

  18. M.J. Zheng, L.D. Zhang, G.H. Li, W.Z. Shen, Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chem. Phys. Lett. 363(1), 123–128 (2002)

    Article  Google Scholar 

  19. D.V. Talapin, A.L. Rogach, E.V. Shevchenko, A. Kornowski, M. Haase, H. Weller, Dynamic distribution of growth rates within the ensembles of colloidal II–VI and III–V semiconductor nanocrystals as a factor governing their photoluminescence efficiency. J. Am. Chem. Soc. 124(20), 5782–5790 (2002)

    Article  Google Scholar 

  20. H. Zhang, L. Wang, H. Xiong, L. Hu, B. Yang, W. Li, Hydrothermal synthesis for high-quality CdTe nanocrystals. Adv. Mater. 15(20), 1712–1715 (2003)

    Article  Google Scholar 

  21. D. Zhao, Y. Fang, H. Wang, Z. He, Synthesis and characterization of high-quality water-soluble CdTe: Zn2+ quantum dots capped by N-acetyl-l-cysteine via hydrothermal method. J. Mater. Chem. 21(35), 13365–13370 (2011)

    Article  Google Scholar 

  22. D. Zhao, Z. He, W.H. Chan, M.M.F. Choi, Synthesis and characterization of high-quality water-soluble near-infrared-emitting CdTe/CdS quantum dots capped by N-acetyl-L-cysteine via hydrothermal method. J. Phys. Chem. C 113(4), 1293–1300 (2008)

    Article  Google Scholar 

  23. A.O. Choi, S.J. Cho, J. Desbarats, J. Lovrić, D. Maysinger, Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells. J. Nanobiotechnol. 5(1), 1 (2007)

    Article  Google Scholar 

  24. P.J. Laura, S.M. Sandra, W.L. Laura, A.H. Jack, Effect of N-acetylcysteine on acetaminophen toxicity in mice relationship to reactive nitrogen and cytokine formation. Toxicol. Sci. 75, 458–467 (2003)

    Article  Google Scholar 

  25. B. Xue, D.W. Deng, J. Cao, F. Liu, X. Li, W. Akers, S. Achilefu, Y.Q. Gu, Synthesis of NAC capped near infrared-emitting CdTeS alloyed quantum dots and application for in vivo early tumor imaging. Dalton Trans. 41(16), 4935–4947 (2012)

    Article  Google Scholar 

  26. D. Zhao, Z. He, P.S. Chan, R.N.S. Wong, N.K. Mak, A.W.M. Lee, W.H. Chan, NAC-capped quantum dot as nuclear staining agent for living cells via an vivo steering strategy. J. Phys. Chem. C 114(14), 6216–6221 (2010)

    Article  Google Scholar 

  27. D.V. Talapin, S. Haubold, A.L. Rogach, A. Kornowski, M. Haase, H. Weller, A novel organometallic synthesis of highly luminescent CdTe nanocrystals. J. Phys. Chem. B 105(12), 2260–2263 (2001)

    Article  Google Scholar 

  28. W.W. Yu, Y.A. Wang, X. Peng, Formation and stability of size, shape and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals. Chem. Mater. 15(22), 4300–4308 (2003)

    Article  Google Scholar 

  29. M. Tomasulo, I. Yildiz, F.M. Raymo, pH-sensitive quantum dots. J. Phys. Chem. B 110(9), 3853–3855 (2006)

    Article  Google Scholar 

  30. W.R. Algar, U.J. Krull, Luminescence and stability of aqueous thioalkyl acid capped CdSe/ZnS quantum dots correlated to ligand ionization. ChemPhysChem 8(4), 561–568 (2007)

    Article  Google Scholar 

  31. J. Li, T. Yang, W.H. Chan, M.M.F. Choi, D. Zhao, Synthesis of high-quality N-acetyl-L-cysteine-capped CdTe quantum dots by hydrothermal route and the characterization through MALDI-TOF mass spectrometry. J. Phys. Chem. C 117(37), 19175–19181 (2013)

    Article  Google Scholar 

  32. H.B. Bu, H. Kikunaga, K. Shimura, K. Takahasi, T. Taniguchi, D. Kim, Hydrothermal synthesis of thiol-capped CdTe nanoparticles and their optical properties. Phys. Chem. Chem. Phys. 15(8), 2903–2911 (2013)

    Article  Google Scholar 

  33. A. Mandal, N. Tamai, Influence of acid on luminescence properties of thioglycolic acid-capped CdTe quantum dots. J. Phys. Chem. C 112(22), 8244–8250 (2008)

    Article  Google Scholar 

  34. S. Kiprotich, F.B. Dejene, J. Ungula, M.O. Onani, The influence of reaction times on structural, optical and luminescence properties of cadmium telluride nanoparticles prepared by wet-chemical process. Physica B 480, 125–130 (2016)

    Article  Google Scholar 

  35. S. Kiprotich, M.O. Onani, F.B. Dejene, High luminescent L-cysteine capped CdTe quantum dots prepared at different reaction times. Physica B 535, 202–210 (2018)

    Article  Google Scholar 

  36. B.D. Cullity, J.W. Weymouth, Elements of X-ray diffraction. Am. J. Phys. 25(6), 394–395 (1957)

    Article  Google Scholar 

  37. S.Y. Ting, P.J. Chen, H.C. Wang, C.H. Liao, W.M. Chang, Y.P. Hsieh, C.C. Yang, Crystallinity improvement of ZnO thin film on different buffer layers grown by MBE. J. Nanomater. 6, 2012 (2012)

    Google Scholar 

  38. O.M. Lemine, Microstructural characterisation of α-Fe2O3 nanoparticles using, XRD line profiles analysis, FE-SEM and FT-IR. Superlattices Microstruct. 45(6), 576–582 (2009)

    Article  Google Scholar 

  39. L.N. Chen, J. Wang, W.T. Li, H.Y. Han, Aqueous one-pot synthesis of bright and ultrasmall CdTe/CdS near-infrared-emitting quantum dots and their application for tumor targeting in vivo. Chem. Commun. 48(41), 4971–4973 (2012)

    Article  Google Scholar 

  40. V.D. Mote, Y. Purushotham, B.N. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6(1), 6 (2012)

    Article  Google Scholar 

  41. X. Gao, Y. Cui, R.M. Levenson, L.W.K. Chung, S. Nie, In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22(8), 969 (2004)

    Article  Google Scholar 

  42. Z. Tang, N.A. Kotov, M. Giersig, Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297(5579), 237–240 (2002)

    Article  Google Scholar 

  43. Z.A. Peng, X. Peng, Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc. 123(7), 1389–1395 (2001)

    Article  Google Scholar 

  44. W.W. Yu, L. Qu, W. Guo, X. Peng, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15(14), 2854–2860 (2003)

    Article  Google Scholar 

  45. J. Tauc, Optical properties of amorphous semiconductors. in Amorphous and Liquid Semiconductors (Plenum, New York, 1974), pp. 159–220

  46. N. Zhao, L. Qi, Low-temperature synthesis of star-shaped PbS nanocrystals in aqueous solutions of mixed cationic/anionic surfactants. Adv. Mater. 18(3), 359–362 (2006)

    Article  Google Scholar 

  47. J.W. Kyobe, E.B. Mubofu, Y.M.M. Makame, S. Mlowe, N. Revaprasadu, Cadmium sulfide quantum dots stabilized by castor oil and ricinoleic acid. Physica E 76, 95–102 (2016)

    Article  Google Scholar 

  48. L. Brus, Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90(12), 2555–2560 (1986)

    Article  Google Scholar 

  49. T. Kippeny, L.A. Swafford, S.J. Rosenthal, Semiconductor nanocrystals: a powerful visual aid for introducing the particle in a box. J. Chem. Educ 79(9), 1094 (2002)

    Article  Google Scholar 

  50. S.N. Sarangi, S.N. Sahu, CdSe nanocrystalline thin films: composition, structure and optical properties. Physica E 23(1), 159–167 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from the South Africa national research foundation and University of the Free State is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kiprotich.

Ethics declarations

Conflict of interest

The authors have no conflict of interests to declare in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiprotich, S., Dejene, B.F. & Onani, M.O. Effects of precursor pH on structural and optical properties of CdTe quantum dots by wet chemical route. J Mater Sci: Mater Electron 29, 16101–16110 (2018). https://doi.org/10.1007/s10854-018-9699-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9699-3

Navigation