Skip to main content
Log in

Facile synthesis of porous Mn2O3/TiO2 microspheres as anode materials for lithium-ion batteries with enhanced electrochemical performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

A Correction to this article was published on 17 October 2018

This article has been updated

Abstract

In this study, the porous Mn2O3/TiO2 microspheres were prepared via a facile two-step hydrothermal method. Firstly, the Mn2O3 particles were obtained by the calcination of hydrothermal-synthesized MnCO3. Then the TiO2 layer was coated on the surface of the Mn2O3 particles by a hydrothermal-assisted liquid phase deposition (HA-LPD) method. The as-prepared samples were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM) and Brunauer–Emmett–Teller analyzer (BET), respectively. Moreover, the electrochemical performances of Mn2O3/TiO2 as an anode material in lithium ion batteries (LIBs) were also evaluated. The results indicated that, the specific capability of the Mn2O3/TiO2 composite material was about 452 mAh g−1 at the current density of 500 mA g−1 after 200 cycles, which was much higher than that of pristine Mn2O3 (313 mAh g−1). Meanwhile, the rate capacity of Mn2O3/TiO2 was 177 mAh g−1 at the current density of 4 A g−1, which was also higher than that of pure Mn2O3 (3 mAh g−1). Moreover, the Mn2O3/TiO2 composite material can still yield a specific capacity of 800 mAh g− 1 at the current density of 1 A g−1 after 1000 cycles. The enhanced electrochemical performances of Mn2O3/TiO2 composite material was mainly attributed to the synergistic effect between the Mn2O3 with high capacity and TiO2 with superior stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 17 October 2018

    The original version of this article is one of the original research paper published along with the Special Issue “Special Issue for Advances in Functional Semiconducting Materials (AFSM)” in Volume 29 Issue 18 of the Journal “Journal of Materials Science: Materials in Electronics”.

References

  1. J.M. Tarascon, M. Armand, Nature 414, 359–367 (2001)

    Article  CAS  Google Scholar 

  2. J.B. Goodenough, Y. Kim, Chem. Mater. 22, 587–603 (2010)

    Article  CAS  Google Scholar 

  3. A. Manthiram, J. Phys. Chem. Lett. 2, 176–184 (2011)

    Article  CAS  Google Scholar 

  4. Y.P. Wu, C. Jiang, C. Wan, R. Holze, J. Power Sources 111, 329–334 (2002)

    Article  CAS  Google Scholar 

  5. J. Ji, J. Liu, L. Lai, X. Zhao, Y. Zhen, J. Lin, Y. Zhu, H. Ji, L.L. Zhang, R.S. Ruoff, ACS Nano. 9, 8609–8616 (2015)

    Article  CAS  Google Scholar 

  6. Y.B. He, B. Li, Q.H. Yang, H. Du, F. Kang, G.W. Ling, Z.Y. Tang, J. Solid State Electrochem. 15, 1977–1985 (2011)

    Article  CAS  Google Scholar 

  7. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. Tarascon, Nature 407, 496–499 (2000)

    Article  CAS  Google Scholar 

  8. S.L. Chou, L. Lu, J.Z. Wang, M.M. Rahman, C. Zhong, H.K. Liu, J. Appl. Electrochem. 41, 1261–1267 (2011)

    Article  CAS  Google Scholar 

  9. Z. Yi, Q. Han, P. Zan, Y. Cheng, Y. Wu, L. Wang, J. Mater. Chem. A 4, 12850–12857 (2016)

    Article  CAS  Google Scholar 

  10. X. Xu, R. Cao, S. Jeong, J. Cho, Nano Lett. 12, 4988–4991 (2012)

    Article  CAS  Google Scholar 

  11. Y. Zhang, H. Liu, Z. Zhu, K.W. Wong, R. Mi, J. Mei, W.M. Lau, Electrochim. Acta 108, 465–471 (2013)

    Article  CAS  Google Scholar 

  12. Y. Qiu, G. Xu, K. Yan, H. Sun, J. Xiao, S. Yang, S. Sun, L. Jin, H. Deng, J. Mater. Chem. 21, 6346–6353 (2011)

    Article  CAS  Google Scholar 

  13. Y.C. Zhang, J.T. Li, Z.G. Wu, L. Huang, S.G. Sun, J. Alloys Compd. 721, 229–235 (2017)

    Article  CAS  Google Scholar 

  14. S. Shi, S. Deng, M. Zhang, M. Zhao, G. Yang, Electrochim. Acta 224, 285–294 (2017)

    Article  CAS  Google Scholar 

  15. J. Henzie, V. Etacheri, M. Jahan, H. Rong, C.N. Hong, V.G. Pol, J. Mater. Chem. A 5, 6079–6089 (2017)

    Article  CAS  Google Scholar 

  16. P. Pal, A.K. Giri, S. Mahanty, A.B. Panda, CrystEngComm 16, 10560–10568 (2014)

    Article  CAS  Google Scholar 

  17. Y. Qiao, Y. Yu, Y. Jin, Y.B. Guan, C.H. Chen, Electrochim. Acta 132, 323–331 (2014)

    Article  CAS  Google Scholar 

  18. Y. Zhang, Y. Yan, X. Wang, G. Li, D. Deng, L. Jiang, C. Shu, C. Wang, Chem. Eur. J. 20, 6126–6130 (2014)

    Article  CAS  Google Scholar 

  19. Y. Deng, Z. Li, Z. Shi, H. Xu, F. Peng, G. Chen, RSC Adv. 2, 4645–4647 (2012)

    Article  CAS  Google Scholar 

  20. H.S. Jadhav, G.M. Thorat, B.B. Kale, J.G. Seo, Dalton Trans. 46, 9777–9783 (2017)

    Article  CAS  Google Scholar 

  21. X.Q. Chen, H.B. Lin, X.W. Zheng, X. Cai, P. Xia, Y.M. Zhu, X.P. Li, W.S. Li, J. Mater. Chem. A 3, 18198–18206 (2015)

    Article  CAS  Google Scholar 

  22. T. Song, U. Paik, J. Mater. Chem. A 4, 14–31 (2016)

    Article  CAS  Google Scholar 

  23. S. Deki, Y. Aoi, O. Hiroi, A. Kajinami, Chem. Lett. 25, 433–434 (1996)

    Article  Google Scholar 

  24. H.K. Lee, D. Sakemi, R. Selyanchyn, C.G. Lee, S.W. Lee, ACS Appl. Mater. Interfaces 6, 57–64 (2014)

    Article  CAS  Google Scholar 

  25. C.X. Lei, X.L. Jiang, X. Huang, X. Liu, D.Q. Zeng, Y.T. Ma, L.S. Wang, D.L. Peng, Appl. Surf. Sci. 359, 860–867 (2015)

    Article  CAS  Google Scholar 

  26. C.X. Lei, X. Huang, X. Liu, L.S. Wang, G.S. Zhang, D.L. Peng, J. Alloys Compd. 692, 227–235 (2017)

    Article  CAS  Google Scholar 

  27. X. Han, X. Han, R. Li, L. Sun, K. Lu, M. Wu, Y. Zhu, X. Zhao, New J. Chem. 40, 6030–6035 (2016)

    Article  CAS  Google Scholar 

  28. Y. Fang, Y. Huang, S. Zhang, W. Jia, X. Wang, Y. Guo, D. Jia, L. Wang, Chem. Eng. J. 315, 583–590 (2017)

    Article  CAS  Google Scholar 

  29. S. Maiti, A. Pramanik, S. Mahanty, CrystEngComm 18, 450–461 (2016)

    Article  CAS  Google Scholar 

  30. C. Yuan, H.B. Wu, Y. Xie, X.W. Lou, Angew. Chem. Int. Ed. 53, 1488–1504 (2014)

    Article  CAS  Google Scholar 

  31. H. Geng, H. Ang, X. Ding, H. Tan, G. Guo, G. Qu, Y. YangJ, Q. Zheng, H. Yan, Gu, Nanoscale 8, 2967–2973 (2016)

    Article  CAS  Google Scholar 

  32. Z. Li, Y. Wang, H. Sun, W. Wu, M. Liu, J. Zhou, G. Wu, M. Wu, J. Mater. Chem. A 3, 16057–16063 (2015)

    Article  CAS  Google Scholar 

  33. K. Li, F. Shua, X. Guo, D. Xue, Electrochim. Acta 188, 793–800 (2016)

    Article  CAS  Google Scholar 

  34. X. Zhang, H. Chen, Y. Xie, J. Guo, J. Mater. Chem. A 2, 3912–3918 (2014)

    Article  CAS  Google Scholar 

  35. J. Luo, X. Xia, Y. Luo, C. Guan, J. Liu, X. Qi, C.F. Ng, T. Yu, H. Zhang, H.J. Fan, Adv. Energy Mater. 3, 737–743 (2013)

    Article  CAS  Google Scholar 

  36. S. Laruelle, S. Grugeon, P. Poizot, M. Dollé, L. Dupont, J.M. Tarascon, J. Electrochem. Soc. 149, A627–A634 (2002)

    Article  CAS  Google Scholar 

  37. H. Su, Y.F. Xu, S.C. Feng, Z.G. Wu, X.P. Sun, C.H. Shen, J.Q. Wang, J.T. Li, L. Huang, S.G. Sun, ACS Appl. Mater. Interfaces 7, 8488–8494 (2015)

    Article  CAS  Google Scholar 

  38. K. Li, F. Shua, X. Guo, D. Xue, CrystEngComm 17, 5094–5100 (2015)

    Article  CAS  Google Scholar 

  39. H.B. Lin, H.B. Rong, W.Z. Huang, Y.H. Liao, L.D. Xing, M.Q. Xu, X.P. Li, W.S. Li, J. Mater. Chem. A 2, 14189–14194 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Project Sponsored by the National Natural Science Foundation of China (Grant No. 51402056) and the Natural Science Foundation of Guangxi (Grant No. 2015GXNSFBA139209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cai-Xia Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gou, QZ., Li, C., Zhang, XQ. et al. Facile synthesis of porous Mn2O3/TiO2 microspheres as anode materials for lithium-ion batteries with enhanced electrochemical performance. J Mater Sci: Mater Electron 29, 16064–16073 (2018). https://doi.org/10.1007/s10854-018-9695-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9695-7

Navigation