Skip to main content

Advertisement

Log in

Free-standing and binder-free electrochemical capacitor electrode based on hierarchical microfibrous carbon–graphene–Mn3O4 nanocomposites materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hierarchical microfibers carbon–graphene–Mn3O4 (MFC–G–Mn3O4) nanocomposites have been successfully prepared via a simple, effective, and scalable chemical deposition method. It was applied as a free-standing and binder-free electrodes for an electrochemical capacitor. The graphene was first synthesized by electrochemical exfoliation of graphite rods and deposited on the microfibers carbon using gradually drop of the temperature until 150 °C to form MFC–G electrode. Then the Mn3O4 was prepared by direct redox depositions on MFC–G substrate at the temperature of 150 °C to form MFC–G–Mn3O4. For comparison purposes, the Mn3O4 was deposited directly on MFC to form MFC–Mn3O4 electrode under similar conditions. The synthesized materials were characterized by using scanning electronic microscopy, X-ray diffraction, Raman spectroscopy, cyclic voltammetry, galvanostatic charge–discharge (GCD) and electrochemical impedance spectroscopy techniques. The results from different characterization techniques indicate that the graphene and Mn3O4 were successfully synthesized and deposited on substrates. The specific capacitance of the electrode MFC–G–Mn3O4 reached 414 F g−1, this is five times greater than that obtained capacitance from the electrode MFC–Mn3O4 which is 83 F g−1. In addition, the introduction of graphene in the matrix of Mn3O4 allows an improvement of contact resistance between the active material and the current collector, electronic conductivity of the electrode, and stability over GCD cycling. The specific capacitance of the MFC–G–Mn3O4 is one of the highest values recorded in the literature of Mn3O4 based materials. Combination of the graphene and Mn3O4 using the direct deposition resulted in efficient synergetic effect between the two materials. The facile synthesis techniques and the good capacitive performances indicate that the developed nanocomposite electrode would be promising as electrode materials for the high-performance electrochemical capacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)

    Article  Google Scholar 

  2. T. Brousse et al., Springer Handbook of Electrochemical Energy (Springer, Heidelberg, 2017), pp. 495–561

    Book  Google Scholar 

  3. B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer, New York, 2013)

    Google Scholar 

  4. T. Bordjiba, M. Mohamedi, L.H. Dao, New class of carbon-nanotube aerogel electrodes for electrochemical power sources. Adv. Mater. 20, 815–819 (2008)

    Article  Google Scholar 

  5. F. Chi et al., Graphene based organic electrochemical capacitors for ac line filtering. Adv. Energy Mater. (2017). https://doi.org/10.1002/aenm.201700591

    Google Scholar 

  6. A.J. Gibson, K.G. Latham, R.C. Burns, S.W. Donne, Electrodeposition mechanism of cathodically-prepared manganese dioxide thin films from permanganate for use in electrochemical capacitors. Electrochim. Acta 236, 198–211 (2017)

    Article  Google Scholar 

  7. Z. Fan et al., Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 21, 2366–2375 (2011)

    Article  Google Scholar 

  8. M. Sawangphruk et al., High-performance supercapacitor of manganese oxide/reduced graphene oxide nanocomposite coated on flexible carbon fiber paper. Carbon 60, 109–116 (2013)

    Article  Google Scholar 

  9. G. Yu et al., Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 11, 4438–4442 (2011)

    Article  Google Scholar 

  10. R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochim. Acta 45, 2483–2498 (2000)

    Article  Google Scholar 

  11. T. Bordjiba, M. Mohamedi, Molding versus dispersion: effect of the preparation procedure on the capacitive and cycle life of carbon nanotubes aerogel composites. J. Solid State Electrochem. 15, 765–771 (2010)

    Article  Google Scholar 

  12. S. Shivakumara, N. Munichandraiah, Asymmetric supercapacitor based on nanostructured porous manganese oxide and reduced graphene oxide in aqueous neutral electrolyte. Solid State Commun. 260, 34–39 (2017)

    Article  Google Scholar 

  13. T. Bordjiba, M. Mohamedi, L.H. Dao, Novel binderless nanostructured carbon nanotubes-carbon aerogel composites for electrochemical double layer capacitors. ECS Trans. 6, 183–189 (2008)

    Article  Google Scholar 

  14. W. He et al., Flexible and high energy density asymmetrical supercapacitors based on core/shell conducting polymer nanowires/manganese dioxide nanoflakes. Nano Energy 35, 242–250 (2017)

    Article  Google Scholar 

  15. C.O. Baker, X. Huang, W. Nelson, R.B. Kaner, Polyaniline nanofibers: broadening applications for conducting polymers. Chem. Soc. Rev. 46, 1510–1525 (2017)

    Article  Google Scholar 

  16. M. Tebyetekerwa et al., Unveiling polyindole: freestanding as-electrospun polyindole nanofibers and polyindole/carbon nanotubes composites as enhanced electrodes for flexible all-solid-state supercapacitors. Electrochim. Acta 247, 400–409 (2017)

    Article  Google Scholar 

  17. J. Xian et al., Carbon-based electrode materials for supercapacitor: progress, challenges and prospective solutions. J. Electrical Eng. 4, 75–87 (2016)

    Google Scholar 

  18. Y. Guetteche, Development of composite material based on porous microfibrous carbon and zinc oxide for energy storage application. Int. J. Electrochem. Sci. 12, 1874–1884 (2017)

    Article  Google Scholar 

  19. B.Y. Guan et al., Coordination polymers derived general synthesis of multishelled mixed metal-oxide particles for hybrid supercapacitors. Adv. Mater. (2017). https://doi.org/10.1002/adma.201605902

    Google Scholar 

  20. J.-J. Jhao et al., The coaxial nanostructure of ruthenium oxide thin films coated onto the vertically grown graphitic nanofibers for electrochemical supercapacitor. Surf. Coat. Technol. 320, 263–269 (2017)

    Article  Google Scholar 

  21. T. Bordjiba, D. Bélanger, Direct redox deposition of manganese oxide on multiscaled carbon nanotube/microfiber carbon electrode for electrochemical capacitor. J. Electrochem. Soc. (2009). https://doi.org/10.1149/1.3090012

    Google Scholar 

  22. T. Bordjiba, D. Bélanger, Development of new nanocomposite based on nanosized-manganese oxide and carbon nanotubes for high performance electrochemical capacitors. Electrochim. Acta 55, 3428–3433 (2010)

    Article  Google Scholar 

  23. G. Nagaraju, R. Kakarla, S.M. Cha, J.S. Yu, Highly flexible conductive fabrics with hierarchically nanostructured amorphous nickel tungsten tetraoxide for enhanced electrochemical energy storage. Nano Res. 8, 3749–3763 (2015)

    Article  Google Scholar 

  24. A.V. Thakur, B.J. Lokhande, Effect of dip time on the electrochemical behavior of PPy-Cu(OH)2 hybrid electrodes synthesized using pyrrole and CuSO4. e-Polymers 17, 167–173 (2017)

    Article  Google Scholar 

  25. A. Thakur, B. Lokhande, Dip time-dependent SILAR synthesis and electrochemical study of highly flexible PPy-Cu(OH)2 hybrid electrodes for supercapacitors. J. Solid State Electrochem. 21, 2577–2584 (2017)

    Article  Google Scholar 

  26. A. Thakur, B. Lokhande, C10H8N2-PPy hybrid flexible electrodes: SILAR synthesis and electrochemical study. J. Mater. Sci.: Mater. Electron. 29, 1630–1635 (2018)

    Google Scholar 

  27. S. Ghasemi, R. Hosseinzadeh, M. Jafari, MnO2 nanoparticles decorated on electrophoretically deposited graphene nanosheets for high performance supercapacitor. Int. J. Hydrog. Energy 40, 1037–1046 (2015)

    Article  Google Scholar 

  28. R. Ingole, B. Lokhande, Nanoporous vanadium oxide network prepared by spray pyrolysis. Mater. Lett. 168, 95–98 (2016)

    Article  Google Scholar 

  29. A.V. Thakur, B.J. Lokhande, Source molarity affected surface morphological and electrochemical transitions in binder-free FeO(OH) flexible electrodes and fabrication of symmetric supercapacitive device. Chem. Pap. 72, 1407–1415 (2018)

    Article  Google Scholar 

  30. A. Thakur, B. Lokhande, Electrolytic anion affected charge storage mechanisms of Fe3O4 flexible thin film electrode in KCl and KOH: a comparative study by cyclic voltammetry and galvanostatic charge–discharge. J. Mater. Sci.: Mater. Electron. 28, 11755–11761 (2017)

    Google Scholar 

  31. H.W. Chang et al., Electrochemical and in situ X-ray spectroscopic studies of MnO2/reduced graphene oxide nanocomposites as a supercapacitor. Phys. Chem. Chem. Phys. 18, 18705–18718 (2016)

    Article  Google Scholar 

  32. H. Chen, S. Zhou, L. Wu, Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials. ACS Appl. Mater. Interfaces 6, 8621–8630 (2014)

    Article  Google Scholar 

  33. R. Ambare, S. Bharadwaj, B. Lokhande, Electrochemical characterization of Mn:Co3O4 thin films prepared by spray pyrolysis via aqueous route. Curr. Appl. Phys. 14, 1582–1590 (2014)

    Article  Google Scholar 

  34. R. Ambare, S. Bharadwaj, B. Lokhande, Spray pyrolysed Mn:Co3O4 thin film electrodes via non-aqueous route and their electrochemical parameter measurements. Measurement 88, 66–76 (2016)

    Article  Google Scholar 

  35. Q. Cheng et al., Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 49, 2917–2925 (2011)

    Article  Google Scholar 

  36. H.-M. Lee, G.H. Jeong, D.W. Kang, S.-W. Kim, C.-K. Kim, Direct and environmentally benign synthesis of manganese oxide/graphene composites from graphite for electrochemical capacitors. J. Power Sources 281, 44–48 (2015)

    Article  Google Scholar 

  37. Z.-S. Wu et al., High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4, 5835–5842 (2010)

    Article  Google Scholar 

  38. M. Toupin, T. Brousse, D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184–3190 (2004)

    Article  Google Scholar 

  39. T.-H. Wu et al., Charge storage mechanism of activated manganese oxide composites for pseudocapacitors. J. Mater. Chem. A 3, 12786–12795 (2015)

    Article  Google Scholar 

  40. W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40, 1697–1721 (2011)

    Article  Google Scholar 

  41. K.S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  42. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183 (2007)

    Article  Google Scholar 

  43. D.A. Brownson, C.E. Banks, CVD graphene electrochemistry: the role of graphitic islands. Phys. Chem. Chem. Phys. 13, 15825–15828 (2011)

    Article  Google Scholar 

  44. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)

    Article  Google Scholar 

  45. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    Article  Google Scholar 

  46. Q. Chen et al., MnO2-modified hierarchical graphene fiber electrochemical supercapacitor. J. Power Sources 247, 32–39 (2014)

    Article  Google Scholar 

  47. J. Deng, X. Wang, X. Duan, P. Liu, Facile preparation of MnO2/graphene nanocomposites with spent battery powder for electrochemical energy storage. ACS Sustain. Chem. Eng. 3, 1330–1338 (2015)

    Article  Google Scholar 

  48. H. Lee, J. Kang, M.S. Cho, J.-B. Choi, Y. Lee, MnO2/graphene composite electrodes for supercapacitors: the effect of graphene intercalation on capacitance. J. Mater. Chem. 21, (2011). https://doi.org/10.1039/C1JM13364K

  49. S.-W. Lee et al., Structural changes in reduced graphene oxide upon MnO2 deposition by the redox reaction between carbon and permanganate ions. J. Phys. Chem. C 118, 2834–2843 (2014)

    Article  Google Scholar 

  50. Y. Li et al., Hydrothermal deposition of manganese dioxide nanosheets on electrodeposited graphene covered nickel foam as a high-performance electrode for supercapacitors. J. Power Sources 279, 138–145 (2015)

    Article  Google Scholar 

  51. M. Ramezani, M. Fathi, F. Mahboubi, Facile synthesis of ternary MnO2/graphene nanosheets/carbon nanotubes composites with high rate capability for supercapacitor applications. Electrochim. Acta 174, 345–355 (2015)

    Article  Google Scholar 

  52. A. Sumboja, C.Y. Foo, X. Wang, P.S. Lee, Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device. Adv. Mater. 25, 2809–2815 (2013)

    Article  Google Scholar 

  53. C. Xiong et al., Two-step approach of fabrication of three-dimensional MnO2-graphene-carbon nanotube hybrid as a binder-free supercapacitor electrode. J. Power Sources 306, 602–610 (2016)

    Article  Google Scholar 

  54. M. Yang, B.G. Choi, Rapid one-step synthesis of conductive and porous MnO2/graphene nanocomposite for high performance supercapacitors. J. Electroanal. Chem. 776, 134–138 (2016)

    Article  Google Scholar 

  55. Z. Zhang et al., Facile synthesis of 3D MnO2-graphene and carbon nanotube-graphene composite networks for high-performance, flexible, all-solid-state asymmetric supercapacitors. Adv. Energy Mater. (2014). https://doi.org/10.1002/aenm.201400064

    Google Scholar 

  56. Y. Zhao, M.P. Li, S. Liu, M.F. Islam, Superelastic pseudocapacitors from freestanding MnO2-decorated graphene-coated carbon nanotube aerogels. ACS Appl. Mater. Interfaces 9, 23810–23819 (2017)

    Article  Google Scholar 

  57. Y. Zheng, W. Pann, D. Zhengn, C. Sun, Fabrication of functionalized graphene-based MnO2 nanoflower through electrodeposition for high-performance supercapacitor electrodes. J. Electrochem. Soc. 163, D230–D238 (2016)

    Article  Google Scholar 

  58. H. Zhou, H.-J. Zhai, Rapid preparation of the hybrid of MnO2 dispersed on graphene nanosheets with enhanced supercapacitive performance. Electrochim. Acta 215, 339–345 (2016)

    Article  Google Scholar 

  59. G. Zhu et al., Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode. Nanoscale 6, 1079–1085 (2014)

    Article  Google Scholar 

  60. X. Zhu, P. Zhang, S. Xu, X. Yan, Q. Xue, Free-standing three-dimensional graphene/manganese oxide hybrids as binder-free electrode materials for energy storage applications. ACS Appl. Mater. Interfaces 6, 11665–11674 (2014)

    Article  Google Scholar 

  61. B.G.S. Raj, R.N.R. Ramprasad, A.M. Asiri, J.J. Wu, S. Anandan, Ultrasound assisted synthesis of Mn3O4 nanoparticles anchored graphene nanosheets for supercapacitor applications. Electrochim. Acta 156, 127–137 (2015)

    Article  Google Scholar 

  62. K. Subramani, D. Jeyakumar, M. Sathish, Manganese hexacyanoferrate derived Mn3O4 nanocubes-reduced graphene oxide nanocomposites and their charge storage characteristics in supercapacitors. Phys. Chem. Chem. Phys. 16, 4952–4961 (2014)

    Article  Google Scholar 

  63. T. Xiong, W.S.V. Lee, X. Huang, J.M. Xue, Mn3O4/reduced graphene oxide based supercapacitor with ultra-long cycling performance. J. Mater. Chem. A 5, 12762–12768 (2017)

    Article  Google Scholar 

  64. J. Chen et al., Synthesis of Mn3O4/N-doped graphene hybrid and its improved electrochemical performance for lithium-ion batteries. Ceram. Int. 43, 4655–4662 (2017)

    Article  Google Scholar 

  65. J.W. Lee, A.S. Hall, J.-D. Kim, T.E. Mallouk, A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 24, 1158–1164 (2012)

    Article  Google Scholar 

  66. X. Zhang, X. Sun, Y. Chen, D. Zhang, Y. Ma, One-step solvothermal synthesis of graphene/Mn3O4 nanocomposites and their electrochemical properties for supercapacitors. Mater. Lett. 68, 336–339 (2012)

    Article  Google Scholar 

  67. X. Zhang et al., Room temperature synthesis of Mn3O4 nanoparticles: characterization, electrochemical properties and hydrothermal transformation to γ-MnO2 nanorods. Mater. Lett. 92, 401–404 (2013)

    Article  Google Scholar 

  68. Z. Qi, A. Younis, D. Chu, S. Li, A facile, and template-free one-pot synthesis of Mn3O4 nanostructures as electrochemical supercapacitors. Nano-Micro Lett. 8, 165–173 (2016)

    Article  Google Scholar 

  69. K. Parvez et al., Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136, 6083–6091 (2014)

    Article  Google Scholar 

  70. M. Wu, G.A. Snook, G.Z. Chen, D.J. Fray, Redox deposition of manganese oxide on graphite for supercapacitors. Electrochem. Commun. 6, 499–504 (2004)

    Article  Google Scholar 

  71. Y. Qian, S. Lu, F. Gao, Preparation of MnO2/graphene composite as electrode material for supercapacitors. J. Mater. Sci. 46, 3517–3522 (2011)

    Article  Google Scholar 

  72. C.-T. Hsieh, D.-Y. Tzou, W.-Y. Lee, J.-P. Hsu, Deposition of MnO2 nanoneedles on carbon nanotubes and graphene nanosheets as electrode materials for electrochemical capacitors. J. Alloys Compd. 660, 99–107 (2016)

    Article  Google Scholar 

  73. Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, Z. Luo, X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45, 1686–1695 (2007)

    Article  Google Scholar 

  74. L. Deng et al., Preparation and capacitance of graphene/multiwall carbon nanotubes/MnO2 hybrid material for high-performance asymmetrical electrochemical capacitor. Electrochim. Acta 89, 191–198 (2013)

    Article  Google Scholar 

  75. B. Gnana Sundara Raj, A.M. Asiri, J.J. Wu, S. Anandan, Synthesis of Mn3O4 nanoparticles via chemical precipitation approach for supercapacitor application. J. Alloys Compd. 636, 234–240 (2015)

    Article  Google Scholar 

  76. R. Boddula, R. Bolagam, P. Srinivasan, Incorporation of graphene-Mn3O4 core into polyaniline shell: supercapacitor electrode material. Ionics (2017). https://doi.org/10.1007/s11581-017-2300-x

    Google Scholar 

  77. L.-L. Wu et al., Nanorod Mn3O4 anchored on graphene nanosheet as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. J. Alloys Compd. 728, 383–390 (2017)

    Article  Google Scholar 

  78. J.-G. Wang et al., Highly flexible graphene/Mn3O4 nanocomposite membrane as advanced anodes for Li-ion batteries. ACS Nano 10, 6227–6234 (2016)

    Article  Google Scholar 

  79. A.C. Ferrari et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    Article  Google Scholar 

  80. A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)

    Article  Google Scholar 

  81. D. Graf et al., Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Lett. 7, 238–242 (2007)

    Article  Google Scholar 

  82. M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano Lett. 10, 751–758 (2010)

    Article  Google Scholar 

  83. M.C. Bernard, A. Hugot-Le Goff, B.V. Thi, S.C. de Torresi, Electrochromic reactions in manganese oxides I. Raman analysis. J. Electrochem. Soc. 140, 3065–3070 (1993)

    Article  Google Scholar 

  84. C. Julien, M. Massot, C. Poinsignon, Lattice vibrations of manganese oxides: part I. periodic structures. Spectrochim. Acta A 60, 689–700 (2004)

    Article  Google Scholar 

  85. L.-X. Yang, Y.-J. Zhu, H. Tong, W.-W. Wang, G.-F. Cheng, Low temperature synthesis of Mn3O4 polyhedral nanocrystals and magnetic study. J. Solid State Chem. 179, 1225–1229 (2006)

    Article  Google Scholar 

  86. D. Yan et al., Three-dimensional reduced graphene oxide–Mn3O4 nanosheet hybrid decorated with palladium nanoparticles for highly efficient hydrogen evolution. Int. J. Hydrog. Energy (2017). https://doi.org/10.1016/j.ijhydene.2017.06.083

    Google Scholar 

  87. Y.F. Liu, G.H. Yuan, Z.H. Jiang, Z.P. Yao, Solvothermal synthesis of mn3o4nanoparticle/graphene sheet composites and their supercapacitive properties. J. Nanomater. 2014, 1–11 (2014)

    Google Scholar 

  88. T. Bordjiba, M. Mohamedi, L.H. Dao, Charge storage mechanism of binderless nanocomposite electrodes formed by dispersion of CNTs and carbon aerogels. J. Electrochem. Soc. (2008). https://doi.org/10.1149/1.2814149

    Google Scholar 

  89. B. Wang, J. Park, C. Wang, H. Ahn, G. Wang, Mn3O4 nanoparticles embedded into graphene nanosheets: Preparation, characterization, and electrochemical properties for supercapacitors. Electrochim. Acta 55, 6812–6817 (2010)

    Article  Google Scholar 

  90. D. Wang, Y. Li, Q. Wang, T. Wang, Facile synthesis of porous Mn3O4 nano­crystal–graphene nanocomposites for electrochemical supercapacitors. Eur. J. Inorg. Chem. 2012, 628–635 (2012)

    Article  Google Scholar 

  91. Y. Fan, X. Zhang, Y. Liu, Q. Cai, J. Zhang, One-pot hydrothermal synthesis of Mn3O4/graphene nanocomposite for supercapacitors. Mater. Lett. 95, 153–156 (2013)

    Article  Google Scholar 

  92. W. Chen, L. Yan, P.R. Bangal, Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48, 1146–1152 (2010)

    Article  Google Scholar 

  93. L. Li et al., Hydrothermal self-assembly synthesis of Mn3O4/reduced graphene oxide hydrogel and its high electrochemical performance for supercapacitors. Chin. J. Chem. 31, 1290–1298 (2013)

    Article  Google Scholar 

  94. G. Jin et al., Strongly coupled graphene/Mn3O4 composite with enhanced electrochemical performance for supercapacitor electrode. Electrochim. Acta 178, 689–698 (2015)

    Article  Google Scholar 

  95. J. Xu et al., A highly atom-efficient strategy to synthesize reduced graphene oxide-Mn3O4 nanoparticles composites for supercapacitors. J. Alloys Compd. 685, 949–956 (2016)

    Article  Google Scholar 

  96. S. Yang, X. Song, P. Zhang, L. Gao, Crumpled nitrogen-doped graphene–ultrafine Mn3O4 nanohybrids and their application in supercapacitors. J. Mater. Chem. A 1, 14162–14169 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarik Bordjiba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabti, Z., Bordjiba, T., Poorahong, S. et al. Free-standing and binder-free electrochemical capacitor electrode based on hierarchical microfibrous carbon–graphene–Mn3O4 nanocomposites materials. J Mater Sci: Mater Electron 29, 14813–14826 (2018). https://doi.org/10.1007/s10854-018-9618-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9618-7

Navigation