Skip to main content
Log in

Green synthesis of α-Fe2O3/BiPO4 composite and its biopolymeric beads for enhanced photocatalytic application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study reports a green and facile hydrothermal method to synthesis α-Fe2O3/BiPO4 composite and was used for photocatalytic application under visible light irradiation. The synthesized samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–Vis diffuse reflectance spectrum (UV–Vis DRS), Fourier transform infrared (FT-IR) spectrum, X-ray photoelectron spectroscopy (XPS), Brunauer–Emmet–Teller (BET) analysis and Photoluminescence (PL), which confirmed the formation of the composite. XRD analysis indicated that all the prepared samples present in pure hexagonal structure without Fe2O3 phases. The photocatalytic studies on methylene blue (MB) and ciprofloxacin (CIP) were evaluated under visible light irradiation and the α-Fe2O3/BiPO4 composite exhibited superior photocatalytic activity compared to the BiPO4. The results of PL studies substantiated that the enhancement of photocatalytic activity could be mainly attributed to the interaction of α-Fe2O3 and BiPO4 in the composite during photocatalysis which effectively improve electron–hole separation. The recyclability experiment corroborated the stability of α-Fe2O3/BiPO4 composite. Finally, the composite was converted into beads using calcium alginate, a non toxic biopolymer for easy separation of the catalyst from the reaction medium, which also showed equally good results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. O. Shan, M.R. Karthikeyan, Reduction of textile dye by using heterogeneous photocatalysis. Am. J. Environ. Prot. 3, 90–94 (2013)

    Google Scholar 

  2. L.L. Yuan, D.D. Huang, W.N. Guo, Q.X. Yang, J. Yu, TiO2/montmorillonite nanocomposite for removal of organic pollutant. Appl. Clay Sci. 53, 272–278 (2011)

    Article  Google Scholar 

  3. H. Fan, Y. Li, B. Liu, Y. Lu, T. Xie, D. Wang, Photoinduced charge transfer properties and photocatalytic activity in Bi2O3/BaTiO3 composite photocatalyst. ACS Appl. Mater. Interfaces 4, 4853–4857 (2012)

    Article  Google Scholar 

  4. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 24, 229–251 (2012)

    Article  Google Scholar 

  5. C.C. Chen, W.H. Ma, J.C. Zhao, Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem. Soc. Rev. 39, 4206–4219 (2010)

    Article  Google Scholar 

  6. M.Y. Guo, M.K. Fung, F. Fang, X.Y. Chen, A.M.C. Ng, A.B. Djurisic, W.K. Chan, ZnO and TiO2 1D nanostructures for photocatalytic applications. J. Alloys Compd. 509, 1328–1332 (2011)

    Article  Google Scholar 

  7. M. Nolan, A. Iwaszuk, A.K. Lucid, J.J. Carey, M. Fronzi, Design of novel visible light active photocatalyst materials: surface modified TiO2. Adv. Mater. 28, 5425–5446 (2016)

    Article  Google Scholar 

  8. J. Zhang, Y.P. Zhang, Y.K. Lei, C.X. Pan, Photocatalytic and degradation mechanisms of anatase TiO2: a HRTEM study. Catal. Sci. Technol. 1, 273–278 (2011)

    Article  Google Scholar 

  9. C. Pan, Y. Zhu, New type of BiPO4 oxy-acid salt photocatalyst with high photocatalytic activity on degradation of dye. Environ. Sci. Technol. 44, 5570–5575 (2010)

    Article  Google Scholar 

  10. S.U. Khan, M. Al-Shahry, Efficient photochemical water splitting by a chemically modified n-TiO2. J. Sci. 297, 2243–2245 (2002)

    Article  Google Scholar 

  11. Z.G. Zou, J.H. Ye, K. Sayama, H. Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414, 625–627 (2001)

    Article  Google Scholar 

  12. J. Jiang, X. Zhang, P.B. Sun, L.Z. Zhang, ZnO/BiOI heterostructures: photoinduced charge-transfer property and enhanced visible-light photocatalytic activity. J. Phys. Chem. 115, 20555–20564 (2011)

    Google Scholar 

  13. S.S. Qian, C.S. Wang, W.J. Liu, Y.H. Zhu, W.J. Yao, X.H. Lu, An enhanced CdS/TiO2 photocatalyst with high stability and activity: effect of mesoporous substrate and bifunctional linking molecule. J. Mater. Chem. 21, 4945–4952 (2011)

    Article  Google Scholar 

  14. H. Lin, H. Ye, B. Xu, J. Cao, S. Chen, Ag3PO4 quantum dot sensitized BiPO4: a novel p–n junction Ag3PO4/BiPO4 with enhanced visible-light photocatalytic activity. Catal. Commun. 37, 55–59 (2013)

    Article  Google Scholar 

  15. F.F. Duo, Y.W. Wang, X.M. Mao, X.C. Zhang, Y.F. Wang, C.M. Fan, A BiPO4/BiOCl heterojunction photocatalyst with enhanced electron-hole separation and excellent photocatalytic performance. Appl. Surf. Sci. 340, 35–42 (2015)

    Article  Google Scholar 

  16. M. Lu, G. Yuan, Z. Wang, Y. Wang, J. Guo, Synthesis of BiPO4/Bi2S3 heterojunction with enhanced photocatalytic activity under visible-light irradiation. Nanoscale Res. Lett. 10, 385–391 (2015)

    Article  Google Scholar 

  17. J. Kang, Q. Kuang, Z.X. Xie, L.S. Zheng, Fabrication of the SnO2/α-Fe2O3 hierarchical heterostructure and its enhanced photocatalytic property. J. Phys. Chem. C 115, 7874–7879 (2011)

    Article  Google Scholar 

  18. A.Y. Murugan, T. Muraliganth, A. Manthiram, Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage. Chem. Mater. 21, 5004–5006 (2009)

    Article  Google Scholar 

  19. Y.Q. Cong, Z. Li, Y. Zhang, Q. Wang, Q. Xu, Synthesis of α-Fe2O3/TiO2 nanotube arrays for photoelectro-Fenton degradation of phenol. Chem. Eng. J. 191, 356–363 (2012)

    Article  Google Scholar 

  20. W. Yan, H.Q. Fan, C. Yang, Ultra-fast synthesis and enhanced photocatalytic properties of alpha-Fe2O3/ZnO core-shell structure. Mater. Lett. 65, 1595–1597 (2011)

    Article  Google Scholar 

  21. X.W. Zhang, M.H. Zhou, L.C. Lei, Co-deposition of photocatalytic Fe doped TiO2 coatings by MOCVD. Catal. Commun. 7, 427–431 (2006)

    Article  Google Scholar 

  22. Y. Guo, G. Zhang, J. Liu, Y. Zhang, Hierarchically structured a-Fe2O3/Bi2WO6 composite for photocatalytic degradation of organic contaminants under visible light irradiation. RSC. Adv. 3, 2963–2970 (2013)

    Article  Google Scholar 

  23. N. Li, X. Hua, K. Wang, Y. Jin, J. Xu, M. Chen, F. Teng, In situ synthesis of uniform Fe2O3/BiOCl p/n heterojunctions and improved photodegradation properties for mixture dyes. Dalton Trans. 43, 13742–13750 (2014)

    Article  Google Scholar 

  24. S. Dutta, A.K. Patra, S. De, A. Bhaumik, B. Saha, Self-assembled TiO2 nanospheres by using a biopolymer as a template and its optoelectronic application. ACS Appl. Mater. Interfaces 4, 1560–1564 (2012)

    Article  Google Scholar 

  25. M.H. Farzana, S. Meenakshi, Photo-decolorization and detoxification of toxic dyes using titanium dioxide impregnated chitosan beads. Int. J. Biol. Macromol. 70, 420–426 (2014)

    Article  Google Scholar 

  26. S. De, S. Dutta, A.K. Patra, B.S. Rana, A.K. Sinha, B. Saha, A. Bhaumik, General biopolymer templated porous TiO2: an efficient catalyst for the conversion of unutilized sugars derived from hemicelluloses. Appl. Catal. A 435–443, 197–203 (2012)

    Article  Google Scholar 

  27. S. Thakur, S. Pandey, O.A. Arotiba, Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue. Carbohydr. Polym. 153, 34–46 (2016)

    Article  Google Scholar 

  28. M. Kimling, R.A. Caruso, Sol-gel synthesis of hierarchically porous TiO2 beads using calcium alginate beads as sacrificial templates. J. Mater. Chem. 22, 4073–4082 (2012)

    Article  Google Scholar 

  29. M. Buaki-sogo, M. Serra, A. Primo, M. Alvaro, Alginate as template in the preparation of active titania photocatalysts. ChemCatChem 5, 513–518 (2013)

    Article  Google Scholar 

  30. C. Yu, X. Li, Z. Liu, X. Yang, Y. Huang, J. Lin, J. Zhang, C. Tang, Synthesis of hierarchically porous TiO2 nanomaterials using alginate as soft templates. Mater. Res. Bull. 83, 609–614 (2016)

    Article  Google Scholar 

  31. J.Q. Albarelli, D.T. Santos, S. Murphy, M. Oelgemo, Use of Ca-alginate as a novelsupport for TiO2 immobilization in methylene blue decolorisation. Water Sci. Technol. 60, 1081–1087 (2009)

    Article  Google Scholar 

  32. P. Cai, S. Zhou, D. Ma, S. Liu, W. Chen, S. Huang, Fe2O3-modified porous BiVO4 nanoplates with enhanced photocatalytic activity. Nano-Micro Lett. 7, 183–193 (2015)

    Article  Google Scholar 

  33. Y. Zhang, B. Shen, H. Huang, Y. He, B. Fei, F. Lv, BiPO4/reducedgraphene oxide composites photocatalyst with high photocatalytic activity. Appl. Surf. Sci. 319, 272–277 (2014)

    Article  Google Scholar 

  34. B. Qu, Y.Sun,L. Liu, C. Li, C. Yu, X. Zhang, Y. Chen, Ultrasmall Fe2O3 nanoparticles/MoS2 nanosheets composite as high-performance anode material for lithium ion batteries. Sci. Rep. 7, 42772 (2017). https://doi.org/10.1038/srep42772

    Article  Google Scholar 

  35. T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254, 2441–2449 (2008)

    Article  Google Scholar 

  36. X.L. Hu, J.C. Yu, J.M. Gong, Q. Li, G.S. Li, Alpha-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv. Mater. 19, 2324–2329 (2007)

    Article  Google Scholar 

  37. M. Hermanek, R. Zboril, I. Medrik, J. Pechousek, C. Gregor, Catalytic efficiency of iron(III) oxides in decomposition of hydrogen peroxide: competition between the surface area and crystallinity of nanoparticles. J. Am. Chem. Soc. 129, 10929–10936 (2007)

    Article  Google Scholar 

  38. V. Stengl, S. Bakardjieva, Molybdenum-doped anatase and its extraordinary photocatalytic activity in the degradation of orange II in the UV and Vis regions. J. Phys. Chem. C 114, 19308–19317 (2010)

    Article  Google Scholar 

  39. T.J. Cai, M. Yue, X.W. Wang, Q. Deng, Preparation, characterization, and photocatalytic performance of NdPW12O40/TiO2 composite catalyst. Chin. J. Catal. 28, 10–16 (2007)

    Article  Google Scholar 

  40. J.V. Kumar, R. Karthik, S.M. Chen, V. Muthuraj, K. Chelladurai, Fabrication of potato-like silver molybdate microstructures for photocatalytic degradation of chronic toxicity ciprofloxacin and highly selective electrochemical detection of H2O2. Sci. Rep. 6, 1–13 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by Department of Science and Technology—Technology System Development (Project No. DST/TSG/NTS/2015/60-G) and the authors acknowledge the same. The first author acknowledges Anna University for the Anna Centenary Research Fellowship (ACRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keerthi Praveen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nithya, M., Praveen, K., Saral sessal, S. et al. Green synthesis of α-Fe2O3/BiPO4 composite and its biopolymeric beads for enhanced photocatalytic application. J Mater Sci: Mater Electron 29, 14733–14745 (2018). https://doi.org/10.1007/s10854-018-9610-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9610-2

Navigation