Skip to main content

Dielectric, ferroelectric and impedance properties of Li+-doped 0.97Na0.4K0.1Bi0.5TiO3–0.03Ba0.7Sr0.3TiO3 ceramics


A series of Li+-doped 0.97Na0.4K0.1Bi0.5TiO3–0.03Ba0.7Sr0.3TiO3 ceramics were prepared by using the conventional solid-state reaction technique. The phase structure, dielectric, ferroelectric and impedance properties were systemically studied. X-ray powder diffraction patterns reveal that all the ceramics possess a pure perovskite phase. Ferroelectric property tests clearly show the disruption of the long-range ferroelectric order as the Li+ doping content increases. Dielectric permittivity results suggest that the samples experience a transformation from ferroelectric to relaxor phase with increasing the Li+ concentration, while the diffuse factors further confirm the enhanced relaxor characteristic. Complex ac impedance data shows that charge carriers obey the long-range conductivity mechanism at low doping levels (x ≤ 0.01), while it changes to a localized mechanism at high doping levels (x ≥ 0.03). The active energy fitted by the relaxation time becomes smaller as the Li+ concentration increases, revealing the increasing concentration of oxygen vacancies. We argue that the increasing concentration of vacancies should be responsible for the enhanced relaxor characteristic by disturbing the long-range ferroelectric orders.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    J. Rödel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009)

    Article  Google Scholar 

  2. 2.

    J. Wu, D. Xiao, J. Zhu, Chem. Rev. 115, 2559 (2015)

    Article  Google Scholar 

  3. 3.

    P. Ren, J. He, X. Wang, M. Sun, H. Zhang, G. Zhao, Scr. Mater. 146, 110 (2018)

    Article  Google Scholar 

  4. 4.

    J.-J. Wang, F.-F. Guo, B. Yang, S.-T. Zhang, L.-M. Zheng, F.-M. Wu, W.-W. Cao, J. Mater. Sci. Mater. Electron. 29, 2357 (2017)

    Article  Google Scholar 

  5. 5.

    P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu, X. Zhang, Adv. Mater. 30, 1705171 (2018)

    Article  Google Scholar 

  6. 6.

    H. Liu, J. Chen, H. Huang, L. Fan, Y. Ren, Z. Pan, J. Deng, L.-Q. Chen, X. Xing, Phys. Rev. Lett. 120, 055501 (2018)

    Article  Google Scholar 

  7. 7.

    P. Ren, Z. Liu, X. Wang, Z. Duan, Y. Wan, F. Yan, G. Zhao, J. Alloys Compd. 742, 683 (2018)

    Article  Google Scholar 

  8. 8.

    G. Smolenskii, V. Isupov, A. Agranovskaya, J. Sov. Phys. Solid State 2, 2651 (1961)

    Google Scholar 

  9. 9.

    S. Kim, H. Choi, S. Han, J.S. Park, M.H. Lee, T.K. Song, M.-H. Kim, D. Do, W.-J. Kim, J. Eur. Ceram. Soc. 37, 1379 (2016)

    Article  Google Scholar 

  10. 10.

    X. Liu, X. Tan, Adv. Mater. 28, 574 (2016)

    Article  Google Scholar 

  11. 11.

    J.-H. Cho, J.-S. Park, S.-W. Kim, Y.-H. Jeong, J.-S. Yun, W.-I. Park, Y.-W. Hong, J.-H. Paik, J. Eur. Ceram. Soc. 37, 3313 (2017)

    Article  Google Scholar 

  12. 12.

    S. Gao, Z. Yao, L. Ning, G. Dong, H. Fan, Q. Li, Adv. Eng. Mater. 19, 1700125 (2017)

    Article  Google Scholar 

  13. 13.

    A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Jpn. J. Appl. Phys. 38, 5564 (1999)

    Article  Google Scholar 

  14. 14.

    Z. Yang, B. Liu, L. Wei, Y. Hou, Mater. Res. Bull. 43, 81 (2008)

    Article  Google Scholar 

  15. 15.

    K.-N. Pham, A. Hussain, C.W. Ahn, W. Kim, S.J. Jeong, J.-S. Lee, Mater. Lett. 64, 2219 (2010)

    Article  Google Scholar 

  16. 16.

    S. Prasertpalichat, B. Phongthipphithak, N. Kumar, D.P. Cann, T. Bongkarn, Ceram. Int. 43, S145 (2017)

    Article  Google Scholar 

  17. 17.

    W.-C. Lee, C.-Y. Huang, L.-K. Tsao, Y.-C. Wu, J. Alloys Compd. 492, 307 (2010)

    Article  Google Scholar 

  18. 18.

    J. Hao, Z. Xu, R. Chu, W. Li, P. Fu, J. Du, G. Li, J. Eur. Ceram. Soc. 36, 4003 (2016)

    Article  Google Scholar 

  19. 19.

    J. Yin, X. Lv, J. Wu, Ceram. Int. 43, 13541 (2017)

    Article  Google Scholar 

  20. 20.

    G. Viola, H. Ning, X. Wei, M. Deluca, A. Adomkevicius, J. Khaliq, M. John Reece, H. Yan, J. Appl. Phys. 114, 014107 (2013)

    Article  Google Scholar 

  21. 21.

    Q. Li, S. Gao, L. Ning, H. Fan, Z. Liu, Z. Li, Ceram. Int. 43, 5367 (2017)

    Article  Google Scholar 

  22. 22.

    F. Li, R. Zuo, D. Zheng, L. Li, D. Viehland, J. Am. Ceram. Soc. 98, 811 (2015)

    Article  Google Scholar 

  23. 23.

    W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H.-J. Kleebe, A.J. Bell, J.r. Rödel, J. Appl. Phys. 110, 074106 (2011)

    Article  Google Scholar 

  24. 24.

    K. Wang, A. Hussain, W. Jo, J. Rödel, D.D. Viehland, J. Am. Ceram. Soc. 95, 2241 (2012)

    Article  Google Scholar 

  25. 25.

    G. Dong, H. Fan, J. Shi, M. Li, W. Jo, J. Am. Ceram. Soc. 98, 1150 (2015)

    Article  Google Scholar 

  26. 26.

    R.A. Malik, A. Hussain, A. Maqbool, A. Zaman, C.-W. Ahn, J.U. Rahman, T.-K. Song, W.-J. Kim, M.-H. Kim, D. Damjanovic, J. Am. Ceram. Soc. 98, 3842 (2015)

    Article  Google Scholar 

  27. 27.

    W. Jo, E. Erdem, R.-A. Eichel, J. Glaum, T. Granzow, D. Damjanovic, J. Rödel, J. Appl. Phys. 108, 014110 (2010)

    Article  Google Scholar 

  28. 28.

    A. Zaman, A. Hussain, R.A. Malik, A. Maqbool, S. Nahm, M.-H. Kim, J. Phys. D 49, 175301 (2016)

    Article  Google Scholar 

  29. 29.

    V. Pal, A. Kumar, O.P. Thakur, R.K. Dwivedi, N.E. Prasad, J. Alloys Compd. 714, 725 (2017)

    Article  Google Scholar 

  30. 30.

    C. Wang, T. Xia, X. Lou, T. Shutao, J. Mater. Sci. 52, 11337 (2017)

    Google Scholar 

  31. 31.

    T. Li, X. Liu, S. Shi, Y. Yin, H. Li, Q. Wang, Y. Zhang, J. Bian, S.S. Rajput, C. Long, B. Peng, Y. Bai, Y. Wang, X. Lou, Appl. Phys. Lett. 111, 202902 (2017)

    Article  Google Scholar 

  32. 32.

    X.-S. Qiao, X.-M. Chen, H.-L. Lian, W.-T. Chen, J.-P. Zhou, P. Liu, S. Zhang, J. Am. Ceram. Soc. 99, 198 (2016)

    Article  Google Scholar 

  33. 33.

    V. Singh, A. Daryapurkar, S.S. Rajput, S. Mukherjee, A. Garg, R. Gupta, J. Am. Ceram. Soc. 100, 5226 (2017)

    Article  Google Scholar 

  34. 34.

    N. Zhao, H. Fan, X. Ren, S. Gao, J. Ma, Y. Shi, Ceram. Int. 44, 571 (2018)

    Article  Google Scholar 

  35. 35.

    J. Deng, L. Liu, X. Sun, S. Liu, T. Yan, L. Fang, B. Elouadi, Mater. Res. Bull. 88, 320 (2017)

    Article  Google Scholar 

  36. 36.

    C. Long, T. Li, H. Fan, Y. Wu, L. Zhou, Y. Li, L. Xiao, Y. Li, J. Alloys Compd. 658, 839 (2016)

    Article  Google Scholar 

  37. 37.

    Z. Liu, P. Ren, C. Long, X. Wang, Y. Wan, G. Zhao, J. Alloys Compd. 721, 538 (2017)

    Article  Google Scholar 

  38. 38.

    P. Ren, Z. Liu, M. Wei, L. Liu, J. Shi, F. Yan, H. Fan, G. Zhao, J. Eur. Ceram. Soc. 37, 2091 (2017)

    Article  Google Scholar 

  39. 39.

    T. Li, H. Fan, C. Long, G. Dong, S. Sun, J. Alloys Compd. 609, 60 (2014)

    Article  Google Scholar 

  40. 40.

    R. Gerhardt, J. Phys. Chem. Solids 55, 1491 (1994)

    Article  Google Scholar 

  41. 41.

    P. Liang, X. Chao, Z. Yang, J. Appl. Phys. 116, 044101 (2014)

    Article  Google Scholar 

Download references


This work was supported by National Science Foundation of China (NSFC Nos. 51772238) and the CSS Project (Grant No. YK2015-0602006). The Research Project of GSEDU 2018 (2018B-101). Prof. X. J. Lou would like to thank the ‘‘One Thousand Youth Talents’’ program for support.

Author information



Corresponding authors

Correspondence to Cheng Wang or Xiaojie Lou.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Lou, X. Dielectric, ferroelectric and impedance properties of Li+-doped 0.97Na0.4K0.1Bi0.5TiO3–0.03Ba0.7Sr0.3TiO3 ceramics. J Mater Sci: Mater Electron 29, 14589–14595 (2018).

Download citation