Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14546–14556 | Cite as

Facile one-step synthesis of TiO2 microrods surface modified with Cr2O3 nanoparticles for acetone sensor applications

  • Linchao Sun
  • Zhengjun Yao
  • Azhar Ali Haidry
  • Zhong Li
  • Qawareer Fatima
  • Lijuan Xie
Article
  • 68 Downloads

Abstract

The paper demonstrated cost-effective one-step hydrothermal process to synthesize TiO2 microrods modified with Cr2O3 nanoparticles. The crystal structure, microstructure and chemical composition of the obtained materials were characterized by XRD, SEM, TEM and EDS analysis. Subsequently, for gas sensor tests the sensors were fabricated onto a ceramic tube having a designed pair of Au electrodes with four Pt wires. The results indicate that the sensors based on the optimal content of Cr2O3 nanoparticles modified TiO2 microrods possess excellent gas-sensing performance to acetone. Specifically, the sensor based on optimal 3% Cr2O3 modified TiO2 microrods exhibited high response (15), fast response/recovery time (5/28 s), outstanding selectivity (against 100 ppm ethanol, methanol and formaldehyde) and good stability (1–40 days) towards 100 ppm acetone at 300 °C. Relying on the analysis, we infer that performance can be controlled by varying the Cr2O3 contents. A plausible sensing mechanism is also discussed to explain the reasons for the enhanced acetone sensing with Cr2O3–TiO2 heterostructures.

Notes

Acknowledgements

This research was financially supported by the Funding of “Natural Science Foundation of Jiangsu Province” (BK20170795) and “Priority Academic Program Development of Jiangsu Higher Education Institutions” (PAPD). This work was also supported by “Six Talent Peaks Project of Jiangsu Province” (YPC16005-PT) and “Postgraduate Research and Practice Innovation Program of Jiangsu Province” (KYCX_0255).

References

  1. 1.
    R. Koppmann, Volatile Organic Compounds in the Atmosphere (Blackwell Publishing, Oxford, 2007)CrossRefGoogle Scholar
  2. 2.
    Z. Zhang, L. Zhu, Z. Wen, Z. Ye, Controllable synthesis of Co3O4 crossed nanosheet arrays toward an acetone gas sensor. Sens. Actuators B 238, 1052–1059 (2017)CrossRefGoogle Scholar
  3. 3.
    X. Liu, J. Hu, B. Cheng, H. Qin, M. Jiang, Acetone gas sensing properties of SmFe1−xMgxO3 perovskite oxides. Sens. Actuators B 134, 483–487 (2008)CrossRefGoogle Scholar
  4. 4.
    M. Righettoni, A. Tricoli, S.E. Pratsinis, Si: WO3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal. Chem. 82, 3581–3587 (2010)CrossRefGoogle Scholar
  5. 5.
    S. Park, Acetone gas detection using TiO2 nanoparticles functionalized In2O3 nanowires for diagnosis of diabetes. J. Alloys Compd. 696, 655–662 (2017)CrossRefGoogle Scholar
  6. 6.
    Z. Jiang, R. Zhao, B. Sun, G. Nie, H. Ji, J. Lei, C. Wang, Highly sensitive acetone sensor based on Eu-doped SnO2 electrospun nanofibers. Ceram. Int. 42, 15881–15888 (2016)CrossRefGoogle Scholar
  7. 7.
    W. Zeng, T. Liu, Z. Wang, Impact of Nb doping on gas-sensing performance of TiO2 thick-film sensors. Sens. Actuators B 166–167, 141–149 (2012)CrossRefGoogle Scholar
  8. 8.
    X. Wang, Y. Sang, D. Wang, S. Ji, H. Liu, Enhanced gas sensing property of SnO2 nanoparticles by constructing the SnO2-TiO2 nanobelt heterostructure. J. Alloys Compd. 639, 571–576 (2015)CrossRefGoogle Scholar
  9. 9.
    X. Wang, J. Zhang, Y. He, L. Wang, L. Liu, H. Wang, X. Guo, H. Lian, Porous Nd-doped In2O3 nanotubes with excellent formaldehyde sensing properties. Chem. Phys. Lett. 658, 319–323 (2016)CrossRefGoogle Scholar
  10. 10.
    D.R. Miller, S.A. Akbar, P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens. Actuators B 204, 250–272 (2014)CrossRefGoogle Scholar
  11. 11.
    D.M. Tobaldi, S.G. Leonardi, R.C. Pullar, M.P. Seabra, G. Neri, J.A. Labrincha, Sensing properties and photochromism of Ag–TiO2 nano-heterostructures. J. Mater. Chem. A 4, 9600–9613 (2016)CrossRefGoogle Scholar
  12. 12.
    J. Liu, S. Yang, W. Wu, Q. Tian, S. Cui, Z. Dai, F. Ren, X. Xiao, C. Jiang, 3D flowerlike α-Fe2O3@TiO2 core-shell nanostructures: general synthesis and enhanced photocatalytic performance. ACS Sustain. Chem. Eng. 3, 2975–2984 (2015)CrossRefGoogle Scholar
  13. 13.
    Y. Kim, P. Rai, Y.T. Yu, Microwave assisted hydrothermal synthesis of Au@TiO2 core–shell nanoparticles for high temperature CO sensing applications. Sens. Actuators B 186, 633–639 (2013)CrossRefGoogle Scholar
  14. 14.
    K. Mahmood, B.S. Swain, A.R. Kirmani, A. Amassian, Highly efficient perovskite solar cells based on a nanostructured WO3-TiO2 core–shell electron transporting material. J. Mater. Chem. A 3, 9051–9057 (2015)CrossRefGoogle Scholar
  15. 15.
    G. Sun, H. Kheel, S. Park, S. Lee, S.E. Park, C. Lee, Synthesis of TiO2 nanorods decorated with NiO nanoparticles and their acetone sensing properties. Ceram. Int. 42, 1063–1069 (2016)CrossRefGoogle Scholar
  16. 16.
    M. Epifani, E. Comini, R. Díaz, A. Genç, T. Andreu, P. Siciliano, J.R. Morante, Acetone sensors based on TiO2 nanocrystals modified with tungsten oxide species. J. Alloys Compd. 665, 345–351 (2016)CrossRefGoogle Scholar
  17. 17.
    M. Epifani, E. Comini, P. Siciliano, G. Faglia, J.R. Morante, Evidence of catalytic activation of anatase nanocrystals by vanadium oxide surface layer: acetone and ethanol sensing properties. Sens. Actuators B 217, 193–197 (2015)CrossRefGoogle Scholar
  18. 18.
    T. Jantson, T. Avarmaa, H. Mandar, T. Uustare, R. Jaaniso, Nanocrystalline Cr2O3–TiO2 thin films by pulsed laser deposition. Sens. Actuators B 109, 24–31 (2005)CrossRefGoogle Scholar
  19. 19.
    O. Alev, E. Sennik, N. Kılıncb, Z.Z. Öztürk, Gas sensor application of hydrothermally growth TiO2 nanorods. Procedia Eng. 120, 1162–1165 (2015)CrossRefGoogle Scholar
  20. 20.
    B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, Reading, 1978)Google Scholar
  21. 21.
    U. Diebold, The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003)CrossRefGoogle Scholar
  22. 22.
    T. Roch, E. Dobročka, M. Mikula, A. Pidík, P. Durina, A.A. Haidry, T. Plecenik, M. Truchlý, B. Grancic, A. Plecenik, P. Kúš, Strong biaxial texture and polymorph nature in TiO2 thin film formed by ex-situ annealing on c-plane Al2O3 surface. J. Cryst. Growth 338, 118–124 (2012)CrossRefGoogle Scholar
  23. 23.
    Z. Li, A.A. Haidry, B. Gao, T. Wang, Z.J. Yao, The effect of Co-doping on the humidity sensing properties of ordered mesoporous TiO2. Appl. Surf. Sci. 412, 638–647 (2017)CrossRefGoogle Scholar
  24. 24.
    G. Chen, J. Chen, Z. Song, C. Srinivasakannan, J. Peng, A new highly efficient method for the synthesis of rutile TiO2. J. Alloys Compd. 585, 74–77 (2014)Google Scholar
  25. 25.
    L.Y. Jiang, S. Xin, X.L. Wu, H. Li, Y.G. Guo, L.J. Wan, Non-sacrificial template synthesis of Cr2O3–C hierarchical core/shell nanospheres and their application as anode materials in lithium-ion batteries. J. Mater. Chem. 20, 7565–7569 (2010)CrossRefGoogle Scholar
  26. 26.
    C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10, 2088–2106 (2010)CrossRefGoogle Scholar
  27. 27.
    B. Wang, Y. Wang, Y. Lei, S. Xie, N. Wu, Y. Gou, C. Han, Q. Shi, D. Fang, Vertical SnO2 nanosheet @ SiC nanofibers with hierarchical architecture for high-performance gas sensors. J. Mater. Chem. C 4, 295–304 (2016)CrossRefGoogle Scholar
  28. 28.
    K. Diao, Y. Huang, M. Zhou, J. Zhang, Y. Tang, S. Wang, T. Liu, X. Cui, Selectively enhanced sensing performance for oxidizing gases based on ZnO nanoparticle-loaded electrospun SnO2 nanotube heterostructures. RSC Adv. 6, 28419–28427 (2016)CrossRefGoogle Scholar
  29. 29.
    N. Yamazoe, K. Shimanoe, Theory of power laws for semiconductor gas sensors. Sens. Actuators B 128, 566–573 (2008)CrossRefGoogle Scholar
  30. 30.
    N. Chen, Y. Li, D. Deng, X. Liu, X. Xing, X. Xiao, Y. Wang, Acetone sensing performances based on nanoporous TiO2 synthesized by a facile hydrothermal method. Sens. Actuators B 238, 491–500 (2017)CrossRefGoogle Scholar
  31. 31.
    Y. Yang, Y. Liang, R. Hu, Q. Yuan, Z. Zou, Anatase TiO2 hierarchical microspheres with selectively etched high-energy {001} crystal facets for high-performance acetone sensing and methyl orange degradation. Mater. Res. Bull. 94, 272–278 (2017)CrossRefGoogle Scholar
  32. 32.
    H. Bian, S. Ma, A. Sun, X. Xu, G. Yang, J. Gao, Z. Zhang, H. Zhu, Characterization and acetone gas sensing properties of electrospun TiO2 nanorods. Superlattices Microstruct. 81, 107–113 (2015)CrossRefGoogle Scholar
  33. 33.
    S. Park, H. Kheel, G.J. Sun, H.W. Kim, T. Ko, C. Lee, Room-temperature hydrogen gas sensing properties of the networked Cr2O3-functionalized Nb2O5 nanostructured sensor. Met. Mater. Int. 22, 730–736 (2016)CrossRefGoogle Scholar
  34. 34.
    M. Epifani, E. Comini, R. Díaz, A. Genc, T. Andreu, P. Siciliano, J.R. Morante, Acetone sensors based on TiO2 nanocrystals modified with tungsten oxide species. J. Alloys Compd. 665, 345–351 (2016)CrossRefGoogle Scholar
  35. 35.
    J. Esmaeilzadeh, S. Ghashghaie, P.S. Khiabani, A. Hosseinmardi, E. Marzbanrad, B. Raissi, C. Zamani, Effect of dispersant on chain formation capability of TiO2 nanoparticles under low frequency electric fields for NO2 gas sensing applications. J. Eur. Ceram. Soc. 34, 1201–1208 (2014)CrossRefGoogle Scholar
  36. 36.
    K. Choi, H.R. Kim, K.M. Kim, D. Liu, G. Cao, J.H. Lee, C2H5OH sensing characteristics of various Co3O4 nanostructures prepared by solvothermal reaction. Sens. Actuators B 146, 183–189 (2010)CrossRefGoogle Scholar
  37. 37.
    Z. Li, A.A. Haidry, T. Wang, Z.J. Yao, Low-cost fabrication of highly sensitive room temperature hydrogen sensor based on ordered mesoporous Co-doped TiO2 structure. Appl. Phys. Lett. 111, 032104 (2017)CrossRefGoogle Scholar
  38. 38.
    S. Park, S. Kim, G.J. Sun, S. Choi, S. Lee, C. Lee, Ethanol sensing properties of networked In2O3 nanorods decorated with Cr2O3-nanoparticles. Ceram. Int. 41, 9823–9827 (2015)CrossRefGoogle Scholar
  39. 39.
    D. Zhang, A. Liu, H. Chang, B. Xia, Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite. RSC Adv. 5, 3016–3022 (2015)CrossRefGoogle Scholar
  40. 40.
    H.J. Kim, J.H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuators B 192, 607–627 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Key Laboratory of Materials Preparation and Protection for Harsh EnvironmentMinistry of Industry and Information TechnologyNanjingChina

Personalised recommendations